作者: Cassie Kozyrkov
编译: Mika
本文为 CDA 数据分析师原创作品,转载需授权
> 关于作者:
Cassie Kozyrkov,Google首席决策师。致力于统计学, 机器学习 /人工智能、数据、决策科学。
数据科学是让数据变得有用的学科。在本文中我将对数据科学中的三个概念进行解读。
1. 定义数据科学
看到数据科学这个术语的早期历史,你会发现当时有两个概念是密不可分的。
· 大数据意味着要更多地利用计算机
· 统计学很难把纸上的算法通过计算机实现
因此,数据科学诞生了。最开始数据科学家的的定义是“能够编程的统计学家”。如今看来,这个说法并不准确,但首先让我们看到数据科学本身。
2003年的数据科学期刊中曾提出:"'数据科学'意味着任何与数据有关的内容。"我很同意这个观点,现在一切都离不开数据。
之后,我们看到了很多不同的观点,比如Conway的维恩图(下图),以及Mason和Wiggins的经典观点。
Drew Conway对数据科学的定义
我个人更喜欢维基百科上的定义:
数据科学一种"结合了统计、数据分析、机器学习及其相关方法的概念",以便用数据"理解和分析实际现象"。
这有些复杂了,让我们精简一下,即:
"数据科学是让数据有用的学科。"
你现在可能会想,但这也太精简了,“有用”这个词怎么能囊括所有这些术语呢?
那么让我们先看到下面的图。
统计学家和机器学习工程师之间的区别,并不是前者使用R语言而后者使用Python。由于许多原因,用SQL、R、Python进行分类是不明智的,如今你甚至可以用SQL进行机器学习。
新手还喜欢通过算法进行区分,许多大学课程也是这么安排的,这也是不明智的。最好不要用直方图、t检验以及神经网络进行分类。坦率地说,如果你很聪明,其实你可以用相同的算法解决任何数据科学问题。
我建议可以这样进行区分:
这指的是什么呢?当然是决定。你可以根据所需的事实,通过描述性分析得出决策。
我们的行动和决定会影响周围的世界。我们之前谈到要让数据变得有用,而这与现实世界的行动是紧密相关的。
以下是决策导向图,完成这三点能够让数据变得有用。
2. 数据挖掘
如果你不知道想做出什么样的决定,那么最好的做法就是去寻找灵感。这就称为数据挖掘、数据分析、描述性分析、探索性数据分析或(EDA)或知识发现(KD)。
分析的黄金法则:只对你所看到的做出结论。
你可以将数据集想象为在暗室中发现的一堆底片。数据挖掘就是让设备尽快曝光这些照片,看是否能从中得出启发。数据挖掘的黄金法则是:只能对你能看到的做出结论,不要对你看不到的内容做出判断,因为你需要统计数据等更多的专业知识。
数据挖掘的专业知识取决于检查数据的速度。一开始暗房会令人生畏,但其实也没什么大不了的,只是学会使用设备就行了。当你开始乐在其中时,你就可以称为数据分析师了;当你能够飞速地曝光照片时,你就可以称为分析师专家了。
3. 统计推断
灵感很容易获得,但严谨来之不易。如果你想重复利用数据,那么则需要专业的培训。作为本科和硕士都学统计学专业的人,我认为统计推断(简称统计)是三个领域中最难且最具哲学内涵的。想学好统计需要花费大量时间。
如果你打算做出高质量、风险可控的重要决策,那么你需要在分析团队中加入统计技能。在不确定的情况下,统计学是能改变你想法的学科。
4. 机器学习
机器学习实质上是使用例子而不是指令来实现操作。关于机器学习我曾写过一些文章,如关于机器学习与AI 的区别;如何入门机器学习等,如果感兴趣的话可以看看。
* The simplest explanation of machine learning you’ll ever read
https://hackernoon.com/the-simplest-explanation-of-machine-learning-youll-ever-read-bebc0700047c
* Are you using the term ‘AI’ incorrectly?
https://medium.com/@kozyrkov/are-you-using-the-term-ai-incorrectly-911ac23ab4f5
* Why businesses fail at machine learning
https://hackernoon.com/why-businesses-fail-at-machine-learning-fbff41c4d5db
5. 数据工程
那么数据工程是什么呢?数据工程指的是为数据科学团队提供数据的工作。数据工程本身就是一个复杂的领域,它更接近软件工程,而不是统计学。
数据工程和数据科学之间的差异是前后的区别。获取数据前的大部分技术工作都可以简单地称为“数据工程”,而得到数据后我们所做的一切都是“数据科学”。
6. 决策智能
决策智能是关于决策的,包括对根据大量数据进行决策,因此这也使其成为一个工程学科。它利用社会和管理科学的理念,增强数据科学的应用。
决策智能是社会和管理科学的组成部分。换而言之,它是数据科学的超集,而不涉及为通用用途创建基本方法之类的研究工作。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16