作者: Harrison Jansma
编译: Mika
CDA 数据分析师原创作品,转载需授权
在过去的一年里,我自学了数据科学。我学习了数百个在线资源课程,每天学习6-8个小时,同时还在做一份兼职工作谋生。
我的目标是在缺乏资金的前提下,从事我热爱的数据科学职业。
在过去几个月里,我取得了很多成就。我发布了自己的网站,并获得了一个很不错的计算机科学研究生课程奖学金。
在本文中,我总结了自己是如何自学数据科学的,希望能给你有所帮助,让你更加顺利地开启自己的数据科学职业生涯。
注意,本文中我所说的“数据科学”指的是,那些将数据转化为现实行动的工具集合。当中包括机器学习、数据库技术、统计、编程和特定领域技术。
资源推荐
互联网上资源纷乱复杂,试图从中学习有时会让人无从下手。
Dataquest,DataCamp和Udacity等网站都提供不错的数据科学知识。它们都有相应的课程计划,都能让你系统地进行学习。
但问题在于,以上这些网站课程太贵了。而且没有教你如何在工作环境中应用概念,同时还限制你进行自我探索。
edX和coursera上的课程是免费的,并且设有针对特定主题的课程。如果你善于从视频或课堂环境中学习,这些都是学习数据科学的绝佳方式。
免费在线教育平台
以下列出了许多不错的数据科学课程,当中有些课程是免费的。
https://www.class-central.com/subject/data-science
如果你喜欢跟着书学习,那么可以看到这本教材。
Data Science From Scratch
http://math.ecnu.edu.cn/~lfzhou/seminar/[Joel_Grus]_Data_Science_from_Scratch_First_Princ.pdf
为了让你更明确在数据科学中需要掌握哪些技能,在下一部分中,我将详细介绍具体的课程计划指南。
数据科学课程指南
Python编程
编程是数据科学家的基本技能。你需要熟悉Python的语法,了解如何以多种不同的方式运行python程序。(Jupyter notebook VS 命令行 VS IDE)
我花了大约一个月的时间来学习这些Python文档,以及CodeSignal上的编程挑战。
https://docs.python.org/3/tutorial/
https://docs.python-guide.org/intro/learning/
统计与线性代数
这是进行机器学习和数据分析的先决条件。如果这方面你有不错的基础,建议花一两个星期来梳理关注概念。
特别注意描述性统计。能够理解数据集是一项非常重要的技能。
Numpy,Pandas,Matplotlib
学习如何加载、操作和可视化数据。掌握这些库对你的个人项目至关重要。
可以查看相关教程,这些都是我用过的。
http://pandas.pydata.org/pandas-docs/stable/
https://docs.scipy.org/doc/numpy/user/index.html
https://matplotlib.org/tutorials/index.html
请记住,学习这些库的唯一方法就是使用它们!
学习机器学习算法的理论和应用。然后将学到的概念应用于真实数据上。
大多数初学者会从使用UCI ML Repository的数据集开始,使用数据并浏览机器学习教程。
Scikit-learn文档具有出色的算法应用教程。
http://scikit-learn.org/stable/
生产系统
工作意味着获取实际数据并将其转化为行动。为此,你需要学习如何使用业务资源来获取、转换和处理数据。
亚马逊网络服务,谷歌云,微软Azure
这是数据科学课程中最基础的部分。主要是因为你使用的特定工具取决于你要进入的行业。
但是,数据库操作是必需的技能。你可以在ModeAnalytics或Codecademy上学习如何用代码操作数据库。你还可以在DigitalOcean上实现自己的数据库。
另一个需要的技能是版本控制。你可以创建GitHub帐户,并命令行每天提交代码来轻松获得此技能。
在考虑学习其他技术时,重要的是认识到你的兴趣是什么。如果你对Web开发感兴趣,那么关注该行业中公司使用的工具。
学习建议
1. 学习概念时要有主次
网上的学习资源很多,因此在线学习时很容易走弯路。
当开始研究某个主题时,你需要牢记自己目标。否则你将忘记初衷,被其他的内容吸引注意力。建议有效地整理和存储资源,从而更专注目前需要掌握的技能。
目前我的Chrome书签栏
如果你这样做,你保持有序的学习路径,将注意力集中在目前应关注的内容,避免分心。
2. 不要着急。学习是跑马拉松,而不是百米冲刺。
如果你要在数据科学领域取得成功,你需要不断地学习。请记住,学习过程就是回报。
在整个学习过程中,你将探索自己感兴趣的内容,你对自己的了解越多,你学习的乐趣就越多。
3. 学习,应用,重复
不要只学习一个概念,然后学习下一个概念。学习过程不会停止,直到你可以将概念应用于现实情况。
4. 建立个人作品集,向他人展示自己的技能
怀疑主义是你在学习数据科学时将面临的最大逆境之一。这可能来自其他人,也可能来自你自己。
因此,在学习数据科学时,个人简历是很重要的一环。这能让你找到理想的工作,成为更自信的数据科学家。
在作品集中包含你引以为荣的项目。你是否从头开始开发过Web应用程序吗?你有自己的IMDB数据库吗?你是否写过有趣的医疗保健数据数据分析?把这些罗列在作品集中。
这是我的作品集,存储在GitHub上是一个不错的选择,其中可以包含摘要页面和相关的项目文件。
5. 数据科学+ ____ =充满激情的职业
数据科学是能够改变世界的工具。数据科学的应用是无穷无尽的,因此你需要找到你的兴趣所在。
如果你找到自己感兴趣的内容,你将更愿意投入其中完成项目。
在学习的过程中,请留意那些让你感兴趣的项目或想法。
发现你所热衷的领域后,你会更系统地学习该领域所需的技能和专业知识。
结论
进入数据科学行业并不容易。为了激励自己继续学习,你需要毅力和自控能力。数据科学家需要时刻具有好奇心,并热衷于寻找答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25