
作者: Harrison Jansma
编译: Mika
CDA 数据分析师原创作品,转载需授权
在过去的一年里,我自学了数据科学。我学习了数百个在线资源课程,每天学习6-8个小时,同时还在做一份兼职工作谋生。
我的目标是在缺乏资金的前提下,从事我热爱的数据科学职业。
在过去几个月里,我取得了很多成就。我发布了自己的网站,并获得了一个很不错的计算机科学研究生课程奖学金。
在本文中,我总结了自己是如何自学数据科学的,希望能给你有所帮助,让你更加顺利地开启自己的数据科学职业生涯。
注意,本文中我所说的“数据科学”指的是,那些将数据转化为现实行动的工具集合。当中包括机器学习、数据库技术、统计、编程和特定领域技术。
资源推荐
互联网上资源纷乱复杂,试图从中学习有时会让人无从下手。
Dataquest,DataCamp和Udacity等网站都提供不错的数据科学知识。它们都有相应的课程计划,都能让你系统地进行学习。
但问题在于,以上这些网站课程太贵了。而且没有教你如何在工作环境中应用概念,同时还限制你进行自我探索。
edX和coursera上的课程是免费的,并且设有针对特定主题的课程。如果你善于从视频或课堂环境中学习,这些都是学习数据科学的绝佳方式。
免费在线教育平台
以下列出了许多不错的数据科学课程,当中有些课程是免费的。
https://www.class-central.com/subject/data-science
如果你喜欢跟着书学习,那么可以看到这本教材。
Data Science From Scratch
http://math.ecnu.edu.cn/~lfzhou/seminar/[Joel_Grus]_Data_Science_from_Scratch_First_Princ.pdf
为了让你更明确在数据科学中需要掌握哪些技能,在下一部分中,我将详细介绍具体的课程计划指南。
数据科学课程指南
Python编程
编程是数据科学家的基本技能。你需要熟悉Python的语法,了解如何以多种不同的方式运行python程序。(Jupyter notebook VS 命令行 VS IDE)
我花了大约一个月的时间来学习这些Python文档,以及CodeSignal上的编程挑战。
https://docs.python.org/3/tutorial/
https://docs.python-guide.org/intro/learning/
统计与线性代数
这是进行机器学习和数据分析的先决条件。如果这方面你有不错的基础,建议花一两个星期来梳理关注概念。
特别注意描述性统计。能够理解数据集是一项非常重要的技能。
Numpy,Pandas,Matplotlib
学习如何加载、操作和可视化数据。掌握这些库对你的个人项目至关重要。
可以查看相关教程,这些都是我用过的。
http://pandas.pydata.org/pandas-docs/stable/
https://docs.scipy.org/doc/numpy/user/index.html
https://matplotlib.org/tutorials/index.html
请记住,学习这些库的唯一方法就是使用它们!
学习机器学习算法的理论和应用。然后将学到的概念应用于真实数据上。
大多数初学者会从使用UCI ML Repository的数据集开始,使用数据并浏览机器学习教程。
Scikit-learn文档具有出色的算法应用教程。
http://scikit-learn.org/stable/
生产系统
工作意味着获取实际数据并将其转化为行动。为此,你需要学习如何使用业务资源来获取、转换和处理数据。
亚马逊网络服务,谷歌云,微软Azure
这是数据科学课程中最基础的部分。主要是因为你使用的特定工具取决于你要进入的行业。
但是,数据库操作是必需的技能。你可以在ModeAnalytics或Codecademy上学习如何用代码操作数据库。你还可以在DigitalOcean上实现自己的数据库。
另一个需要的技能是版本控制。你可以创建GitHub帐户,并命令行每天提交代码来轻松获得此技能。
在考虑学习其他技术时,重要的是认识到你的兴趣是什么。如果你对Web开发感兴趣,那么关注该行业中公司使用的工具。
学习建议
1. 学习概念时要有主次
网上的学习资源很多,因此在线学习时很容易走弯路。
当开始研究某个主题时,你需要牢记自己目标。否则你将忘记初衷,被其他的内容吸引注意力。建议有效地整理和存储资源,从而更专注目前需要掌握的技能。
目前我的Chrome书签栏
如果你这样做,你保持有序的学习路径,将注意力集中在目前应关注的内容,避免分心。
2. 不要着急。学习是跑马拉松,而不是百米冲刺。
如果你要在数据科学领域取得成功,你需要不断地学习。请记住,学习过程就是回报。
在整个学习过程中,你将探索自己感兴趣的内容,你对自己的了解越多,你学习的乐趣就越多。
3. 学习,应用,重复
不要只学习一个概念,然后学习下一个概念。学习过程不会停止,直到你可以将概念应用于现实情况。
4. 建立个人作品集,向他人展示自己的技能
怀疑主义是你在学习数据科学时将面临的最大逆境之一。这可能来自其他人,也可能来自你自己。
因此,在学习数据科学时,个人简历是很重要的一环。这能让你找到理想的工作,成为更自信的数据科学家。
在作品集中包含你引以为荣的项目。你是否从头开始开发过Web应用程序吗?你有自己的IMDB数据库吗?你是否写过有趣的医疗保健数据数据分析?把这些罗列在作品集中。
这是我的作品集,存储在GitHub上是一个不错的选择,其中可以包含摘要页面和相关的项目文件。
5. 数据科学+ ____ =充满激情的职业
数据科学是能够改变世界的工具。数据科学的应用是无穷无尽的,因此你需要找到你的兴趣所在。
如果你找到自己感兴趣的内容,你将更愿意投入其中完成项目。
在学习的过程中,请留意那些让你感兴趣的项目或想法。
发现你所热衷的领域后,你会更系统地学习该领域所需的技能和专业知识。
结论
进入数据科学行业并不容易。为了激励自己继续学习,你需要毅力和自控能力。数据科学家需要时刻具有好奇心,并热衷于寻找答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03