作者 | Jo Stichbury
翻译 | Mika
本文为 CDA 数据分析师原创作品,转载需授权
前言
如今人工智能备受追捧,由于传统软件团队缺乏AI技能,常常会遇到一些挑战。越来越多的企业都开始对人工智能进行投资,并在寻找具有AI技能的人才。
随着市场对AI人才的需求不断增长,许多机构都开始提供相应的培训课程,而且价格和质量各不相同。与其他所有学习一样,在投入大量精力和金钱后,你当然不希望发现浪费了时间却没学到应获得的技能。
那么对于想入门人工智能的人群来说,应该从哪儿开始呢?
本文列出了一些优质AI学习资源。希望在阅读本文后,能帮助你顺利开启AI学习之旅。
在线课程
Udacity
当斯坦福大学教授Sebastian Thrun和Peter Norvig将他们的“人工智能导论”课程免费发布到网上时,Udacity开始了在线课程的尝试。之后Udacity吸引了超过190个国家的16万名学生,并提供AI等一系列技术课程。最近还加入了飞行汽车、无人驾驶汽车和机器人技术领域的一系列“纳米学位”课程,这些课程可以在六个月左右完成,具体取决于你的时间安排,每周需要花10到20个小时。
这些纳米学位课程收费较贵,如果你不想花钱的话,也有许多免费的课程,比如Introduction to AI 和 Introduction to Machine Learning等。
Kaggle
Kaggle是一个数据科学家社区。拥有一个公共数据平台,你可以在其中找到一些有趣的数据集,Kaggle根据数据举办了相关的机器学习比赛。当中也有一些学习资料,这些材料简短但全面,涵盖了机器学习和深度学习等领域。课程强调实用技能而不是抽象理论,所以一开始你就需要动手编程。因此它适合有一定Python基础的初学者,也适合数据科学家来扩展他们的机器学习工具包。
Microsoft和EdX
Microsoft在EdX上的提供了AI专业课程Microsoft Professional Program in AI。该课程旨在面向有抱负的工程师,从人工智能的基本概念入门到掌握为人工智能解决方案构建深度学习模型所需技能。当中提供十门课程,加上一个顶点项目,这些课程都是免费的,如果你需要认证证书则需要付费。当中包含的课程很不错,例如AI所需的数学基础入门,以及数据分析中的伦理学和法律课程。
Coursera
部分课程资料是免费提供的,但若想获得证书必须付款。当中最著名和最受推崇的课程之一就是吴恩达的斯坦福机器学习课程。
其他的Coursera课程在7天免费试用之后会收取费用,你可以免费收看课程视频等内容。在这些课程中,我推荐以下这几个好评最多的课程。
Machine Learning with TensorFlow on Google Cloud Platform Specialization
Advanced Data Science with IBM (as described by Bartleby of the Economist)
NVidia and deeplearning.ai deep learning specialization.
fast.ai
Practical Deep Learning for Coders这一课程在实践性的学习方法方面获得很多好评。
斯坦福大学课程
斯坦福大学的课程在AI领域有极高的声誉。部分课程可以在YouTube上看到,例如卷积神经网络用于视觉识别 (CS231n Convolutional Neural Networks for Visual Recognition)。
Hugo Larochelle的网站包含大量有关深度学习的内容链接,你可以根据自己感兴趣的领域进行学习。
其他资源
Norvig 和Russell的Artificial Intelligence: A Modern Approach 是一本很棒的人工智能书籍。
Peltarion团队写了一本小型电子书 The essential AI handbook for leaders 是很不错的选择,在入门AI时如果没有明确的方向,那么这本书是很好的起点。
超越 AI:Python和统计
如果你打算亲身体验AI,而不仅仅是了解基础知识,那么你需要学习一些编程,因此你很可能会使用到Python。它不仅是一门优秀的语言,而且关于Python还有很多课程和免费书籍:
Kaggle有一个免费的Python课程,学习总时长需14个小时以上,当中包括Python的基础知识。
Udacity上有许多Python的免费课程,包括教授使用NumPy和Pandas库的数据分析入门课程。
以下是Coursera的一些课程:
An introduction to interactive programming with python
Programming for everybody
如果想掌握数据科学背后的数学知识,那么可汗学院是一个不错的选择。当中有不同级别的课程,能够帮助你掌握最困难的概念。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13