
作者 | Jo Stichbury
翻译 | Mika
本文为 CDA 数据分析师原创作品,转载需授权
前言
如今人工智能备受追捧,由于传统软件团队缺乏AI技能,常常会遇到一些挑战。越来越多的企业都开始对人工智能进行投资,并在寻找具有AI技能的人才。
随着市场对AI人才的需求不断增长,许多机构都开始提供相应的培训课程,而且价格和质量各不相同。与其他所有学习一样,在投入大量精力和金钱后,你当然不希望发现浪费了时间却没学到应获得的技能。
那么对于想入门人工智能的人群来说,应该从哪儿开始呢?
本文列出了一些优质AI学习资源。希望在阅读本文后,能帮助你顺利开启AI学习之旅。
在线课程
Udacity
当斯坦福大学教授Sebastian Thrun和Peter Norvig将他们的“人工智能导论”课程免费发布到网上时,Udacity开始了在线课程的尝试。之后Udacity吸引了超过190个国家的16万名学生,并提供AI等一系列技术课程。最近还加入了飞行汽车、无人驾驶汽车和机器人技术领域的一系列“纳米学位”课程,这些课程可以在六个月左右完成,具体取决于你的时间安排,每周需要花10到20个小时。
这些纳米学位课程收费较贵,如果你不想花钱的话,也有许多免费的课程,比如Introduction to AI 和 Introduction to Machine Learning等。
Kaggle
Kaggle是一个数据科学家社区。拥有一个公共数据平台,你可以在其中找到一些有趣的数据集,Kaggle根据数据举办了相关的机器学习比赛。当中也有一些学习资料,这些材料简短但全面,涵盖了机器学习和深度学习等领域。课程强调实用技能而不是抽象理论,所以一开始你就需要动手编程。因此它适合有一定Python基础的初学者,也适合数据科学家来扩展他们的机器学习工具包。
Microsoft和EdX
Microsoft在EdX上的提供了AI专业课程Microsoft Professional Program in AI。该课程旨在面向有抱负的工程师,从人工智能的基本概念入门到掌握为人工智能解决方案构建深度学习模型所需技能。当中提供十门课程,加上一个顶点项目,这些课程都是免费的,如果你需要认证证书则需要付费。当中包含的课程很不错,例如AI所需的数学基础入门,以及数据分析中的伦理学和法律课程。
Coursera
部分课程资料是免费提供的,但若想获得证书必须付款。当中最著名和最受推崇的课程之一就是吴恩达的斯坦福机器学习课程。
其他的Coursera课程在7天免费试用之后会收取费用,你可以免费收看课程视频等内容。在这些课程中,我推荐以下这几个好评最多的课程。
Machine Learning with TensorFlow on Google Cloud Platform Specialization
Advanced Data Science with IBM (as described by Bartleby of the Economist)
NVidia and deeplearning.ai deep learning specialization.
fast.ai
Practical Deep Learning for Coders这一课程在实践性的学习方法方面获得很多好评。
斯坦福大学课程
斯坦福大学的课程在AI领域有极高的声誉。部分课程可以在YouTube上看到,例如卷积神经网络用于视觉识别 (CS231n Convolutional Neural Networks for Visual Recognition)。
Hugo Larochelle的网站包含大量有关深度学习的内容链接,你可以根据自己感兴趣的领域进行学习。
其他资源
Norvig 和Russell的Artificial Intelligence: A Modern Approach 是一本很棒的人工智能书籍。
Peltarion团队写了一本小型电子书 The essential AI handbook for leaders 是很不错的选择,在入门AI时如果没有明确的方向,那么这本书是很好的起点。
超越 AI:Python和统计
如果你打算亲身体验AI,而不仅仅是了解基础知识,那么你需要学习一些编程,因此你很可能会使用到Python。它不仅是一门优秀的语言,而且关于Python还有很多课程和免费书籍:
Kaggle有一个免费的Python课程,学习总时长需14个小时以上,当中包括Python的基础知识。
Udacity上有许多Python的免费课程,包括教授使用NumPy和Pandas库的数据分析入门课程。
以下是Coursera的一些课程:
An introduction to interactive programming with python
Programming for everybody
如果想掌握数据科学背后的数学知识,那么可汗学院是一个不错的选择。当中有不同级别的课程,能够帮助你掌握最困难的概念。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14