CDA数据分析研究院原创作品,转载需授权
小编总是被那些玩转数据、利用数据做出超炫酷图表的大佬深深折服,膝盖都不够给他们。进行数据可视化做出超炫图表的软件有很多,今天小编也用数据分析常用的python来演示一下如何做出精彩的数据可视化呈现。
导入相关的库和加载数据
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date, timedelta, datetime
设置路径和加载数据
小编使用的是一个记录美国1908年到2009年飞机出事和死亡乘客记录的数据。
import os
os.chdir(r'D:\data\air_data')
Data=pd.read_csv('airplane.csv')
查看各列有没有缺失值:
Data.isnull().sum()
对缺失数据进行清洗:
Data['Time'] = Data['Time'].replace(np.nan, '00:00')
Data['Time'] = Data['Time'].str.replace('c: ', '')
Data['Time'] = Data['Time'].str.replace('c:', '')
Data['Time'] = Data['Time'].str.replace('c', '')
Data['Time'] = Data['Time'].str.replace('12\'20', '12:20')
Data['Time'] = Data['Time'].str.replace('18.40', '18:40')
Data['Time'] = Data['Time'].str.replace('0943', '09:43')
Data['Time'] = Data['Time'].str.replace('22\'08', '22:08')
Data['Time'] = Data['Time'].str.replace('114:20', '00:00')
Data['Time'] = Data['Date'] + ' ' + Data['Time']
return datetime.strptime(x, '%m/%d/%Y %H:%M')
Data['Time'] = Data['Time'].apply(todate)
print('Date ranges from ' + str(Data.Time.min()) + ' to ' + str(Data.Time.max()))
Data.Operator = Data.Operator.str.upper()
绘制1908年到2009年飞机出事频数的折线图,大概得出一个趋势变化。
Temp = Data.groupby(Data.Time.dt.year)[['Date']].count()
Temp = Temp.rename(columns={"Date": "Count"})
plt.figure(figsize=(12,6))
plt.style.use('bmh')
plt.plot(Temp.index, 'Count', data=Temp, color='blue', marker = ".", linewidth=1)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Year', loc='Center', fontsize=14)
plt.show()
我们把时间再精细化点,观察每月,每个星期,甚至每小时的事故,这次我们不看趋势,看量,绘制条形图。
import matplotlib.pylab as pl
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 2)
pl.figure(figsize=(15,10))
plt.style.use('seaborn-muted')
ax = pl.subplot(gs[0, :]) # row 0, col 0
sns.barplot(Data.groupby(Data.Time.dt.month)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.month)[['Date']].count(), color='lightskyblue', linewidth=2)
plt.xticks(Data.groupby(Data.Time.dt.month)[['Date']].count().index, ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
plt.xlabel('Month', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Month', loc='Center', fontsize=14)
ax = pl.subplot(gs[1, 0])
sns.barplot(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.weekday)[['Date']].count(), color='lightskyblue', linewidth=2)
plt.xticks(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])
plt.xlabel('Day of Week', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Day of Week', loc='Center', fontsize=14)
ax = pl.subplot(gs[1, 1])
sns.barplot(Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count().index, 'Date', data=Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count(),color ='lightskyblue', linewidth=2)
plt.xlabel('Hour', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Hour', loc='Center', fontsize=14)
plt.tight_layout()
plt.show()
出事时,每年登机人数与死亡人数的对比图
Fatalities = Data.groupby(Data.Time.dt.year).sum()
Fatalities['Proportion'] = Fatalities['Fatalities'] / Fatalities['Aboard']
plt.figure(figsize=(15,6))
plt.subplot(1, 2, 1)
plt.fill_between(Fatalities.index, 'Aboard', data=Fatalities, color="skyblue", alpha=0.2)
plt.plot(Fatalities.index, 'Aboard', data=Fatalities, marker = ".", color="Slateblue", alpha=0.6, linewidth=1)
plt.fill_between(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", alpha=0.2)
plt.plot(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", marker = ".", alpha=0.6, linewidth=1)
plt.legend(fontsize=10)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Amount of people', fontsize=10)
plt.title('Total number of people involved by Year', loc='Center', fontsize=14)
plt.subplot(1, 2, 2)
plt.plot(Fatalities.index, 'Proportion', data=Fatalities, marker = ".", color = 'red', linewidth=1)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Ratio', fontsize=10)
plt.title('Fatalities / Total Ratio by Year', loc='Center', fontsize=14)
plt.tight_layout()
plt.show()
通过对比图我们可以看到死亡人数变得如此之高(即使在90年代后似乎有下降的趋势)。一些人提出了一个很好的观点,那就是图表并没有显示每年所有航班发生事故的比例。因此,1970-1990年在空中交通信号灯的历史上看起来是可怕的一年,死亡人数上升,但也有可能是乘飞机的总人数上升,而实际上比例下降了。
亲爱的筒子们,想了解更多用python玩转数据、掌握炫酷可视化技能那就赶紧关注CDA数据分析师微信公众号(cdacdacda)吧,点赞、转发、收藏,更多干货内容呈现给你噢。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16