
关于机器学习需要注意的内容有很多,我们也在前面的文章中给大家介绍出了两点,讲述了机器学习是由表示、评价、优化组成以及泛化及其作用是十分重要的,在这篇文章中我们会继续为大家介绍更多有关机器学习需要了解的注意事项。
在这篇文章中我们主要给大家介绍一下机器学习需要注意的内容,那就是过拟合有多样性。一般我们在进行机器学习工作的时候我们会常常遇到这样一个问题,那就是如果我们所拥有的知识和数据不足以完全确定正确的分类器,那该怎么办?我们做出的很多决定都不是基于现实的,只是在数据中随机编码。这个问题就是过拟合,这是机器学习的难题。当学习者输出的分类器在训练数据上能达到100%准确度,但在测试数据上却只有一半的准确率,而实际上它在两个数据集上的输出结果都能达到七成的准确率,这就是我们所说的过拟合。
机器学习中的过拟合形式多种多样,而且也不会立即变得明显。理解过拟合的一种方法是将泛化误差分解为偏差和方差。偏差是一种学习者倾向于不断地学习同样的错误。而方差是学习随机事物的倾向。线性学习者有很高的偏差,因为当两个类之间的边界不是一个超平面的时候,学习者就无法归纳它。决策树不存在这个问题,因为它们可以表示任何布尔函数,但另一方面,它们可能会受到高方差的影响,那就是由相同现象产生的不同训练集的决策树通常是非常不同的,实际上它们应该是一样的。而交叉验证可以帮助对抗过拟合,我们可以通过使用它来选择决策树的最佳大小来学习。它不是万金油,因为如果我们用它来做太多的参数选择,它本身就会开始过拟合。当然除了交叉验证,还有很多方法可以对抗过度拟合。最受欢迎的是在评价函数中添加一个正则化项。在添加新结构之前执行像卡方这样的统计显著性测试,以确定这个类的分布是否真的不同于这种结构。当数据非常稀缺时,这些技术尤其有用。虽然如此,我们应该对某种技术能解决所有过度拟合问题的说法表示怀疑。
在这篇文章中我们给大家详细介绍了机器学习中过拟合形式的知识,从这篇文章中我们不难发现过拟合是有多种多样的,而正是由于多种多样的过拟合我们才能够解决机器学习中的很多问题,我们要注意这些内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10