
在上一篇文章中我们简单给大家介绍了关于机器学习的知识,顺便也讲了讲机器学习误差的原因。其实不管是什么算法都是有方差和偏差存在的。在理想情况下,机器学习的误差就会小的很多。随机森林是可以减少方差的,而我们在上一篇文章中也留给大家两个问题,第一是随机森林是怎么减少这种误差?第二个问题是随机森林有什么优缺点。带着这两个问题,我们给大家介绍一下这些内容。
其实随机森林一种可以减少方差的算法,如果大家接触过决策树的话,那么大家一定知道,决策树以高方差、低偏差。这主要是因为它能够对复杂的关系,甚至是过拟合数据中的噪声进行建模。也就是说决策树训练的模型通常是精确的,但常常在同一数据集中的不同数据样本之间显示出很大程度的变化。而随机森林则是通过聚合单个决策树的不同输出来减少可能导致决策树错误的方差。通过多数投票算法,我们可以找到大多数单个树给出的平均输出,从而平滑了方差,这样模型就不容易产生离真值更远的结果。
说到这里,我们就不得不说一说随机森林的思想,随机森林思想是取一组高方差、低偏差的决策树,并将它们转换成低方差、低偏差的新模型。看到这里,大家的脑海里有一个问题,那就是为什么随机森林是随机的?这是因为随机森林中的随机来源于算法用训练数据的不同子集训练每个单独的决策树,用数据中随机选择的属性对每个决策树的每个节点进行分割。通过分割打乱元素,使其具有随机性。通过引入这种随机性元素,该算法能够创建彼此不相关的模型。这导致可能的误差均匀分布在模型中,意味着误差最终会通过随机森林模型的多数投票决策策略被消除。这就是随机森林的思想,同时也是随机森林为什么能够降低方差和偏差的原因。
我们在这篇文章中给大家介绍了关于随机森林降低偏差和方差的方式,通过这些内容我们可以从侧面了解到随机森林的工作原理。由于篇幅原因我们在这篇文章中无法给大家讲解随机森林优缺点的知识了,我们会在下一篇文章中为大家介绍剩余部分的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08