
我们在上一篇文章中给大家介绍了关于深度学习中的前馈神经网络的相关知识,而前馈神经网络是神经网络中最朴素的一个内容,这是因为前馈神经网络的知识是比较简单的。而我们在上一篇文章中给大家提到了一个方法,那就是梯度下降法,在这篇文章中我们就给大家介绍一下这些知识。
首先,梯度下降法就是求出所需参数的极值,使损失最小化。当然,在求取参数的过程中,无论是取任何值,难以避免产生的是一个误差值,在训练过程中,工程师们会引入一个损失函数Loss,而上述的梯度下降求取参数最优解的同时便是求出最小损失函数的过程。
而在训练的过程中,有两个主要环节,一个是训练集训练,另一个是验证集测试。从名字我们可以看出来,训练集训练是搭建最合适模型所需,验证集测试是检验所搭建模型是否合适使用。而在检验的过程中,可能会出现过拟合问题,深度学习中高维的分类器,可能使模型过度拟合,降低模型的准确性——验证集验证过程中会基于Loss损失函数和准确率来判断是否在较优的准确度。当然,模型搭建完以后,并不是万事大吉了,在搭建模型完成后,还有第三步,就是用测试集,检验搭建模型的效用。
一个基础神经网络的流程框架会在训练处理中引入的比较核心的思维。在学习深度学习的过程中,我们会很容易发现,基于上述提到的最基础的神经网络结构,开发者们是一一针对工程实践时,遇到的瓶颈,找到相应的解决办法。而这些办法,慢慢建立成为新的落地模型。所以,我们是可以基于最简单网络模型,再进一步了解这些更新的神经网络模型的特性和属性的,而这些模型,既可以解决最基本神经网络无法突破的部分问题,同时,也面临着其他具体的局限。那么局限是什么呢?在卷积神经网络中比较明显,在和之前的相比,神经元可响应一部分覆盖范围的周围单元、通关权值共享的方式使得下一层工作量大大较少。
从这篇文章中我们不难发现梯度下降法是一个十分重要的内容,而梯度下降法在神经网络和机器学习中都是十分常见的,在后面的文章中我们继续为大家介绍一下这些内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10