当我们要学习人工智能的时候,我们需要学习很多的知识,比如机器学习、深度学习等。一般来说,机器学习是人工智能的核心知识,要想学好人工智能就必须重视机器学习的知识。在这篇文章中我们给大家介绍一下关于机器学习需要了解的知识。
当然,说到机器学习就必须要说一下机器学习算法,在机器学习算法中,尤其是神经网络被认为是新的人工智能革命的起因。而机器学习中涉及到了增强学习,那么什么是增强学习呢?数据驱动算法可以分为三类:监督式、非监督式和增强学习。监督式学习和非监督式学习通常用于执行诸如图像分类、检测等任务,虽然它们的精确度是显著的,但这些任务不同于我们所期望的智能。而这些就是增强学习的来源。而增强学习的原理还是很简单的,环境给agent一个正确的东西给予奖励,并且对于错误的东西来惩罚它。
下面我们就给大家介绍一下增强学习中的算法,有两种应用广泛的增强学习算法,分别是Q Learning和Deep Q Learning,其中Q Learning是一种应用广泛的增强学习算法。如果不进行详细的数学运算,给定的动作质量取决于agent处于什么状态。agent通常执行给予最大回报的操作。当然,在这个算法中,agent根据环境给予多少回报来学习每个动作的质量。每个环境的状态值以及Q值通常存储在表中。当agent与环境交互时,Q值从随机值更新到实际上有助于最大化回报的值。而Deep Q Learning则是Q Learning的拓展,这是因为Q Learning的使用表的问题在于它不能很好地扩展。如果状态数太高,该表将不适合于内存。这就是Deep Q Learning可以应用的地方。深度学习基本上是一种通用的近似机器,它能理解抽象的表示。深度学习可以用来近似Q值,也可以通过梯度下降学习Q值。
在增强学习中,在训练数据的情况下总会有经验回放,这是因为在训练神经网络时,数据不平衡起着非常重要的作用。如果一个模型被训练,当agent与环境交互时,就会出现不平衡。所以,所有状态以及相关数据都存储在内存中,神经网络可以随机选取一批交互和学习。
那么增强学习有什么延伸的方面呢?其实增强学习有很多的功能,能很好地处理许多事情,但是在反馈稀疏的地方通常会失败。agent不会长期探索实际有益的行为。有时,为了自身的缘故而不是直接尝试解决问题,需要采取一些行动。因为这样做可以让agent执行复杂的操作,基本上允许agent计划事情。在这种设置中,有两个Q网络。它们被表示为控制器和元控制器。 元控制器查看原始状态并计算要遵循的目标。 控制器与目标一起进入状态,并输出策略来解决目标。检查是否达成目标,并向控制器给予回报。 当片段结束或达到目标时,控制器停止。然后,元控制器选择一个新目标,并重复这个目标。
在这篇文章中我们简单给大家介绍了关于机器学习需要了解的知识,具体的内容就是关于增强学习的一些知识。通过这些内容我们可以更深入地了解深度学习的知识,希望这篇文章能够更好地帮助到大家。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14