其实在我们的生活中有很多技术都是利用到了机器学习,比如说推荐系统、智能图片美化和聊天机器人等,这些技术在机器学习和数据处理算法的帮助下已经被大家广泛使用。在这篇文章中我们给大家介绍一下机器学习中的深度学习以及支持向量机和降维算法的相关知识,希望这篇文章能够更好地帮助大家理解机器学习。
首先我们说一下深度学习,深度学习是人工神经网络的最新分支,它受益于当代硬件的快速发展。众多研究者目前的方向主要集中于构建更大、更复杂的神经网络,目前有许多方法正在聚焦半监督学习问题,其中用于训练的大数据集只包含很少的标记。深度学习的例子有很多,比如说深玻耳兹曼机(Deep Boltzmann Machine,DBM)、Deep Belief Networks(DBN)、卷积神经网络(CNN)、Stacked Auto-Encoders。而深度学习的优点和缺点是一样的,就是,在语音、语义、视觉、各类游戏(如围棋)的任务中表现极好,算法可以快速调整,并且能够适应新的问题。缺点就是需要大量数据进行训练、训练要求很高的硬件配置、模型处于「黑箱状态」,难以理解内部机制、元参数(Metaparameter)与网络拓扑选择困难。
下面我们给大家介绍一下支持向量机,当给定一组训练事例,其中每个事例都属于两个类别中的一个,支持向量机(SVM)训练算法可以在被输入新的事例后将其分类到两个类别中的一个,使自身成为非概率二进制线性分类器。而支持向量机模型将训练事例表示为空间中的点,它们被映射到一幅图中,由一条明确的、尽可能宽的间隔分开以区分两个类别。随后,新的示例会被映射到同一空间中,并基于它们落在间隔的哪一侧来预测它属于的类别。支持向量机的优点就是在非线性可分问题上表现优秀。缺点就是非常难以训练,并且很难解释。
而降维算法是机器学习中一个有名的算法,这种算法和集簇方法类似,降维追求并利用数据的内在结构,目的在于使用较少的信息总结或描述数据。而这一算法可用于可视化高维数据或简化接下来可用于监督学习中的数据。许多这样的方法可针对分类和回归的使用进行调整。降维算法的案例有很多,比如说主成分分析、主成分回归、偏最小二乘回归、Sammon 映射、多维尺度变换、投影寻踪、线性判别分析、混合判别分析、二次判别分析、灵活判别分析。降维算法的优点就是可处理大规模数据集以及无需在数据上进行假设。缺点就是难以搞定非线性数据、难以理解结果的意义。
在这篇文章中我们给大家介绍了很多关于机器学习的算法,具体包括深度学习、支持向量机以及降维算法。学习这些知识是个挺枯燥的过程,但坚持下来你就会享受到成果的喜悦。因此,一定要加油喔,功夫不负有心人。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14