热线电话:13121318867

登录
首页案例分享关于机器学习中需要我们知道的事情
关于机器学习中需要我们知道的事情
2021-03-08
收藏

机器学习的过程中,我们需要对机器学习有个深入的了解,才能够更有把握地驾驭机器学习,但是有很多朋友由于不会选择算法或者不懂得其中的知识从而跳进陷阱,白白浪费了时间和精力而无果。在这篇文章中我们就重点给大家介绍一下关于机器学习中需要我们知道的必备知识。

机器学习中你需要知道的事——偏差与方差

我们在进行机器学习的过程中需要了解偏差和方差,在统计学中,一个模型好坏,是根据偏差和方差来衡量的,所以我们有必要了解偏差和方差的知识,首先偏差描述的是预测值(估计值)的期望E与真实值Y之间的差距。偏差越大,越偏离真实数据。而方差描述的是预测值P的变化范围,离散程度,是预测值的方差,也就是离其期望值E的距离。方差越大,数据的分布越分散。

一般情况下,如果是小训练集,高偏差/低方差的分类器要比低偏差/高方差大分类的优势大,因为后者会发生过拟合。然而,随着你训练集的增长,模型对于原数据的预测能力就越好,偏差就会降低,此时低偏差/高方差的分类器就会渐渐的表现其优势,而高偏差分类器这时已经不足以提供准确的模型了。

机器学习中你需要知道的事——算法怎么选

那么我们如何选择出一个合适的算法呢?其实算法我们首先应该选择的就是逻辑回归,倘若它的效果不显著,那么可以将它的结果作为基准来参考,在基础上与其他算法进行比较。然后我们试试决策树或者随机森林的知识看看是否可以大幅度提升你的模型性能。即便最后我们并没有把它当做为最终模型,我们也可以使用随机森林来移除噪声变量,做特征选择。当然如果特征的数量和观测样本特别多,那么当资源和时间充足时,使用SVM不失为一种选择。而现在深度学习很热门,很多领域都用到,它是以神经网络为基础的。而算法固然重要,但好的数据却要优于好的算法,设计优良特征是大有好处的。假如我们有一个超大数据集,那么无论我们使用哪种算法可能对分类性能都没太大影响。

在这篇文章中我们给大家介绍了机器学习涉及的偏差和方差的相关内容,同时也给大家介绍了如何选择出一个合适的算法。这些知识都是能够帮助大家更好地理解机器学习和掌握机器学习的,所以说我们在学习机器学习或进行机器学习领域工作时一定要注意算法的选择。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询