人工智能(AI,Artificial Intelligence)现在已经成为一个热词。有些人很乐观,认为人工智能无所不能;有些人很悲观,认为人工智能会对人类社会和生活产生威胁。但无论从哪个角度来说,AI将在很近的未来改变全世界已经成为一个共识。
仅在2018年上半年,就有数据显示全球范围内AI相关产业融资规模达到435亿美元,最热的地方并不在美国、欧洲、日本,而是在中国!!中国一国的融资规模就达到了317亿美元,占到了全球份额的72%。
而与投资极其火爆呈鲜明对照的是国内的AI人才急缺,当前供求比已达到1:10,缺口达500万,也就是说10个工作岗位,只有1位AI人才,严重的供不应求。
AI人才极度短缺必然导致其薪资水涨船高。根据各种报道,近年来AI相关专业应届生年薪可达50万,优秀毕业生甚至超过80万,但依然是“人才难求”,而对于做出过成功项目的超级人才,给出百万以上年薪的大厂也不在少数。
那么对于我们普通的AI小白来说,AI大概是怎么回事?为什么说AI能改变全世界?AI从哪些方面能够改变全世界?为什么AI人才这么受到市场追捧?AI人才是怎么炼成的?这几个大问题一时半会可能很难说清,但是,现在有了一张“神器”,可以让我们很快的了解相关知识。
有了这张“神器”
还来得及学习的AI知识的,可以找到学习的门径,成为AI产业的高级人才。
来不及学习的(此处应有一个痛苦的表情包,但是所有表情包都要版权,我们作为负责任的公号,不干那侵权的事,放段文字,大家脑补一下吧),可以简单了解AI,尽快磨炼自己的核心竞争力,让自己(在短期内)无法被AI取代。
以上两点都无法做到的(此处应有一个更痛苦的表情包,但还是没有,请大家再次自行脑补),可以被安排得明明白白,至少知道自己的岗位为什么就被AI取代了,当个“明白鬼”…………
这张“神器”就是
“人工智能地图”
这张图厉害了,一图全揽AI的历史与未来,可以让你了解AI的理论与应用。
这张图共分3个方面,9大方向、92个模块、389个知识点!
今天主要说说第一个方面,AI的发展历史。
概括地来说,AI发展至今的历史,可以分为三段。
1、第一阶段(20世纪50年代——80年代)。这一阶段AI刚诞生,基于抽象数学推理的可编程数字计算机已经出现,符号主义(Symbolism)快速发展,但由于很多事物不能形式化表达,建立的模型存在一定的局限性。此外,随着计算任务的复杂性不断加大,AI发展一度遇到瓶颈。
2、第二阶段(20 世纪80 年代——90 年代末)。在这一阶段,专家系统得到快速发展,数学模型有重大突破,但由于专家系统在知识获取、推理能力等方面的不足,以及开发成本高等原因,AI的发展又一次进入低谷期。
3、第三阶段(21 世纪初——至今)。随着大数据的积聚、理论算法的革新、计算能力的提升,AI在很多应用领域取得了突破性进展。现在,AI迎来了又一个繁荣时期。
在AI发展的这60年间,涌现了无数的天才人物与标志性事件,篇幅所限,小编在这里列举一二:
艾伦·图灵(Alan Turing,1912-1954),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵测试,至今每年都有图灵测试的比赛;此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础;1954年,图灵把一个泡过氰化物的苹果咬入口中,告别世界,享年41岁,而这个被咬了一口的苹果被认为是苹果公司logo的来源。
约翰·麦卡锡(John McCarthy,1927-2011),斯坦福大学人工智能实验室主任,他在1956年的达特茅斯会议上第一次提出了“人工智能”这个概念。
马尔文·明斯基(Marvin Minsky,1927-2017),曾经影响人工智能和人工神经网络界几十年的争议性天才人物,他是首批机械人手臂、世界上首位神经网络模拟器Snare、世界上最早能够模拟人类活动的机器人Robot C的创建者。
亚瑟·塞缪尔(Arthur Samuel,1901–1990),IBM先驱研究员,他在1959年提出了“机器学习”的概念,机器学习将传统的制造智能演化为通过学习能力来获取智能,推动人工智能进入了第一次繁荣期。
赫伯特·西蒙(Herbert Simon,1916~2001),他与另外两位学者在1956年成功开发了世界上最早的启发式程序“逻辑理论家”(logic Theorist)),从而使机器迈出了逻辑推理的第一步。他也是至今世界上唯一的计算机科学领域最高奖——图灵奖(1975年)与经济学领域最高奖——诺贝尔经济学奖(1978年)双料获得者。
深蓝(Deep Blue),IBM公司生产的一台超级国际象棋电脑,1997年,它击败了国际象棋冠军加里·卡斯帕罗夫。
阿尔法围棋(AlphaGo),由谷歌(Google)旗下DeepMind公司开发,2017年,它击败了围棋世界冠军柯洁。
2016 年以来,美国、英国、法国、德国、中国等国家纷纷发表了各自国家的“人工智能发展战略”,将人工智能提高到了国家竞争战略的高度!
这张神器刚一面市,就已经“洛阳纸贵”,同时有八位业内大咖鼎力推荐!
(此处是周星驰《唐伯虎点秋香》片中“八位一起,何其壮观”截图,大家脑补~~~)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31