古往今来,人类一直在探求科技的极限。随着信息技术在21世纪的爆发,数据科学与人工智能技术迎来自己的春天,尤其是以深度学习为基础的人工智能技术可谓是大放异彩,在诸多领域远胜人类,并且如人脸识别这样的技术也纷纷落地,甚至悲观者认为,机器智能时代来临,倘若某天机器有了自主思维,人类将会面临灭顶之灾。可是,深度学习就如此无所不能吗?答案是否定的!深度学习是利用深层神经网络的技术,虽然在图像识别等方面已经能够超越人类,但是它仍然有许多方面是不能完成的,本文列举深度学习目前不能实现的一些领域,希望能够帮大家打开思维,更好地认识深度学习。
既是学霸,又是游戏王
一般来说,多数人每年可以看300篇文献,而IBM的Watson系统在10分钟里就可以阅读2000万的文献,显而易见,深度学习的学习能力是远远大于人类的,是个十足的“学霸”。与此同时,在游戏领域,不管是围棋还是dota2,深度学习有足够的能力碾压人类。所以深度学习既是学霸,又是游戏王。
多才多艺
下棋,写诗,作曲,艺术画······2016年,阿尔法狗大胜李世石,2017年微软小冰出版第一部诗集,随后又开始转向音乐创作·····深度学习已经慢慢变成琴棋书画样样精通,多才多艺全能王。
从深度学习所取得的成果来看,它似乎已经无所不能,在诸多方面超过了人类。
算法输出不稳定,容易被攻击
在图像识别领域,我们可能在一张图像中只改变一个像素点的值,那么输出结果会发生巨大改变,这就是算法输出不稳定导致的,这种细微的改变在人类看来微不足道,对于算法模型来说确不同。不仅在图像领域,自然语言处理领域也有这样的问题。在问答系统中,在原始文本中随机得加入一些简单的词,模型的理解能力大大降低。这种问题不仅出现在深度学习,传统机器学习更容易被攻击。
模型复杂度高,难以纠错或调试
在2016年阿法狗与李世石的大战中,李世石赢了一局。在李世石的78手后,阿法狗的胜率便直线下降。如果可以投降的话,那么在李世石的第78手后,阿法狗应该会选择投降,而并不会针对这一手进行相应的改进。此外,在深度学习进行翻译时,不管是给模型什么数据输入,都会有一个有意义的输出。此前的谷歌翻译曾遇到过这样的问题,在翻译结果有明显错误的时候,翻译部门的工程师也很难去对模型修改,可见深度学习模型的复杂。
层级复合程度高,参数不透明
在图像识别领域,我们在模型的中间层中尽力去抓取图像的特征。在第一层的卷积层计算后,我们对结果进行可视化,可以很容易看出结果与原图像有很大相似性。然后,随着层数的加深,对中间其他层的可视化,我们完全不能看出中间层所代表的意义。主要原因在于感受野的复合,而且每层的卷积核也会产生复合,加上一些模型会有自己特有的复合,如inception模块的复合,残差的复合,让我们难以从中间层的可视化中看到模型具体运行的结果。
对数据依赖性强,模型增量性差
深度学习是端到端结构,灵活性非常低。我们将单个图像拼接在一起,人类很容易识别的内容,深度学习确无能为力,可见其迁移能力较差。在“语义标注”和“关系检测”这类问题中,人类可以通过完成一个任务中的多个子任务,并将子任务整合的方式解决问题,而对于深度学习来说,多个子任务与一个总任务是完全不同的两个任务,需要不同的模型去解决问题。在数据量较小的情况下,模型拟合能力较差。
专注直观感知类问题,对开放性问题无能为力
我们小时候都曾学习过关于乌鸦喝水的故事。乌鸦在面对半瓶水,而自己的嘴够不着水时,会往瓶子里丢入石子,使得水面上升从而喝到水。此外,乌鸦在无法拨开坚果时,它会把坚果丢在马路上,让来往的车辆碾压从而迟到果实,在此过程中,乌鸦能够通过观察人行道的情况学会判断车辆是否会行驶以保障自己的安全。而鹦鹉也有自己的智能,在听过人类重复说过的话后,鹦鹉能够很好地模仿人类说话。深度学习只能做到鹦鹉的智能,而做不到乌鸦的智能,可见其泛化能力之低。此外,深度学习也难以理解图像背后的寓意。当一幅图中出现奥巴马与一群大象时,深度学习仅仅能辨认图中是一个男人与一群大象,显然图作者却是想透过图片暗喻美国的两党之争,一般来说,大象喻指美国民主党。
机器偏见难以避免,人类知识难以有效监督
这可能是目前深度学习面临的最大问题。数据是深度学习的基础,而数据的可靠程度决定了模型的可靠程度。微软层开发聊天机器人Tay,模仿年轻网民的语言模式。但是试用24小时后便被引入歧途,成为偏激的种族主义者,甚至发出了“希特勒无罪”的消息。原因在于年轻的网民本身的语料库并不是纯净的,是人就会有偏见,这种偏见在网络中尤其严重,这样便导致了Tay用来训练的数据带有偏见,并使得Tay误入歧途,而人类知识的监督很难有效采用,这就无法避免机器的偏见。另一个例子,美国法院用以评估犯罪风险的算法COMPAS,也被证明对黑人造成了系统性歧视。机器偏见无法消除,日后可能会给人类带来严重的后果。
不可否认,深度学习可以在特定领域超过人类,有很好的效果,但它并非万能。某种意义上说,它离智能还差很远。目前,对深度学习的泛化性与可解释性的呼声越来越高。2017年7月,国务院在《新一代人工智能发展规划》中提出“实现具备高可解释性,强泛化能力的人工智能”。或许下一代人工智能技术还是在深度学习基础之上展开,但是希望新的技术能够很好地解决现在深度学习的不能,更好地造福人类!
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16