从前两天开始,各省市关于高考成绩放榜和各批次录取分数线都陆续出炉,教育部也发布了最新的全国高等学校名单。
于是乎,所谓的野鸡大学也就无处躲藏了。
也给广大的高考生在填报志愿的时候,提供了一个参考。
当然本次不讨论这个...
最新发布的名单没有本科院校的数量,于是小F找了2018年的数据。
1243所本科院校,和本次获取到的数据「1281个」基本差不多。
下面展示一下数据。
包含了专业名称,开设此专业的院校数量,及每年的就业率,最后是每年毕业生数量。
5万多条院校开通专业的数据,涵盖11大类,582个专业,1281个本科院校。
接下来就来分析一波,先对学科进行分组。
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
import pandas as pd
import jieba
# 设置列名与数据对齐
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
# 显示15行
pd.set_option('display.max_rows', 15)
# 读取数据
df = pd.read_csv('message.csv', encoding='gbk', header=None, names=['subject', 'major', 'school'])
# 学科分类
df_subject = df.groupby('subject').count.reset_index.sort_values(by='school')
print(df_subject)
# 获取列表数据
list1, list2 = ,
for i in df_subject['subject']:
list1.append(i)
for j in df_subject['school']:
list2.append(j)
print(list1)
print(list2)
获得数据如下:
利用获取的两个列表数据进行可视化。
这里「工学」位居第一,也和当下时代的发展相契合。
传统点的就是工业4.0,智能点的就是人工智能。
无不和「工学」息息相关。
接下来对专业进行分析。
# 专业分类
df_major = df.groupby('major').count.reset_index.sort_values(by='school')
print(df_major)
# 获取列表数据
list1, list2 = ,
for i in df_major['major'][-10:]:
list1.append(i)
print(list1)
for j in df_major['school'][-10:]:
list2.append(j)
print(list2)
得到结果如下:
专业TOP10出炉,也能以供参考。
照例还是使用现成的模板,方便多了...
最终结果如下。
开设英语的本科院校达到了1001所,接近院校总数的80%了。
不过网上对英语的评价就是:英语==失业。
所以对于英语专业,需要慎重考虑。
尾随其后的是计算机科学与技术,目前的大热门。
当然是不是修电脑我就不清楚了,相信关注小F公众号的小伙伴们,都能感受到计算机的魅力。
令人失望的是,小F就读的大机械居然没上榜,惭愧呀。
想当初「机械机械,压倒一切」,真不是瞎吹的。
一入机械深似海,从此妹子是路人。
这句也不假,说多了都是泪~
下面统计院校总数,并获取校名包含学院的院校数量。
# 对学校进行分组
df_name = df.groupby('school').count.reset_index.sort_values(by='subject')
print(df_name)
# 输出包含学院的校名
print(df_name[df_name['school'].str.contains('学院')])
得到院校总数以及哪所学校的专业最多:
嗯,1281所本科院校。
其中贵州大学以164个本科专业位居榜首。
接下来看一下校名包含学院的学校有多少所。
829所,占比64.7%,那么剩下的差不多都是大学了。
学院变大学(校名),这也是每年好多高校一直在做的事情。
毕竟一个霸气的校名,也能吸引不少考生报名。
最后生成一个校名词云图。
其中需要去掉「大学」和「学院」这两个关键词。
def create_wordcloud(df):
"""
生成校名词云
"""
# 分词
text = ''
for line in df['name']:
text += ' '.join(jieba.cut(line, cut_all=False))
text += ' '
backgroud_Image = plt.imread('school.jpg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='C:WindowsFonts华康俪金黑W8.TTF',
max_words=1000,
max_font_size=150,
min_font_size=15,
prefer_horizontal=1,
random_state=50,
)
wc.generate_from_text(text)
img_colors = ImageColorGenerator(backgroud_Image)
wc.recolor(color_func=img_colors)
# 看看词频高的有哪些
process_word = WordCloud.process_text(wc, text)
sort = sorted(process_word.items, key=lambda e: e[1], reverse=True)
print(sort[:50])
plt.imshow(wc)
plt.axis('off')
wc.to_file("校名词云.jpg")
print('生成词云成功!')
# 去除大学
df_name = df_name['school'].str.replace('大学', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
df_name = pd.DataFrame(dict_name)
# 去除学院
df_name = df_name['name'].str.replace('学院', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
# 生成校名词云图
create_wordcloud(df_name)
得到结果如下:
师范和科技,妥妥的扛把子。
讲了半天,最后该如何选择呢?
当然是想去哪就去哪(分数高),冥冥之中,自有天意~
最后祝大家都能选到理想的大学和心仪的专业!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20