从前两天开始,各省市关于高考成绩放榜和各批次录取分数线都陆续出炉,教育部也发布了最新的全国高等学校名单。
于是乎,所谓的野鸡大学也就无处躲藏了。
也给广大的高考生在填报志愿的时候,提供了一个参考。
当然本次不讨论这个...
最新发布的名单没有本科院校的数量,于是小F找了2018年的数据。
1243所本科院校,和本次获取到的数据「1281个」基本差不多。
下面展示一下数据。
包含了专业名称,开设此专业的院校数量,及每年的就业率,最后是每年毕业生数量。
5万多条院校开通专业的数据,涵盖11大类,582个专业,1281个本科院校。
接下来就来分析一波,先对学科进行分组。
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
import pandas as pd
import jieba
# 设置列名与数据对齐
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
# 显示15行
pd.set_option('display.max_rows', 15)
# 读取数据
df = pd.read_csv('message.csv', encoding='gbk', header=None, names=['subject', 'major', 'school'])
# 学科分类
df_subject = df.groupby('subject').count.reset_index.sort_values(by='school')
print(df_subject)
# 获取列表数据
list1, list2 = ,
for i in df_subject['subject']:
list1.append(i)
for j in df_subject['school']:
list2.append(j)
print(list1)
print(list2)
获得数据如下:
利用获取的两个列表数据进行可视化。
这里「工学」位居第一,也和当下时代的发展相契合。
传统点的就是工业4.0,智能点的就是人工智能。
无不和「工学」息息相关。
接下来对专业进行分析。
# 专业分类
df_major = df.groupby('major').count.reset_index.sort_values(by='school')
print(df_major)
# 获取列表数据
list1, list2 = ,
for i in df_major['major'][-10:]:
list1.append(i)
print(list1)
for j in df_major['school'][-10:]:
list2.append(j)
print(list2)
得到结果如下:
专业TOP10出炉,也能以供参考。
照例还是使用现成的模板,方便多了...
最终结果如下。
开设英语的本科院校达到了1001所,接近院校总数的80%了。
不过网上对英语的评价就是:英语==失业。
所以对于英语专业,需要慎重考虑。
尾随其后的是计算机科学与技术,目前的大热门。
当然是不是修电脑我就不清楚了,相信关注小F公众号的小伙伴们,都能感受到计算机的魅力。
令人失望的是,小F就读的大机械居然没上榜,惭愧呀。
想当初「机械机械,压倒一切」,真不是瞎吹的。
一入机械深似海,从此妹子是路人。
这句也不假,说多了都是泪~
下面统计院校总数,并获取校名包含学院的院校数量。
# 对学校进行分组
df_name = df.groupby('school').count.reset_index.sort_values(by='subject')
print(df_name)
# 输出包含学院的校名
print(df_name[df_name['school'].str.contains('学院')])
得到院校总数以及哪所学校的专业最多:
嗯,1281所本科院校。
其中贵州大学以164个本科专业位居榜首。
接下来看一下校名包含学院的学校有多少所。
829所,占比64.7%,那么剩下的差不多都是大学了。
学院变大学(校名),这也是每年好多高校一直在做的事情。
毕竟一个霸气的校名,也能吸引不少考生报名。
最后生成一个校名词云图。
其中需要去掉「大学」和「学院」这两个关键词。
def create_wordcloud(df):
"""
生成校名词云
"""
# 分词
text = ''
for line in df['name']:
text += ' '.join(jieba.cut(line, cut_all=False))
text += ' '
backgroud_Image = plt.imread('school.jpg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='C:WindowsFonts华康俪金黑W8.TTF',
max_words=1000,
max_font_size=150,
min_font_size=15,
prefer_horizontal=1,
random_state=50,
)
wc.generate_from_text(text)
img_colors = ImageColorGenerator(backgroud_Image)
wc.recolor(color_func=img_colors)
# 看看词频高的有哪些
process_word = WordCloud.process_text(wc, text)
sort = sorted(process_word.items, key=lambda e: e[1], reverse=True)
print(sort[:50])
plt.imshow(wc)
plt.axis('off')
wc.to_file("校名词云.jpg")
print('生成词云成功!')
# 去除大学
df_name = df_name['school'].str.replace('大学', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
df_name = pd.DataFrame(dict_name)
# 去除学院
df_name = df_name['name'].str.replace('学院', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
# 生成校名词云图
create_wordcloud(df_name)
得到结果如下:
师范和科技,妥妥的扛把子。
讲了半天,最后该如何选择呢?
当然是想去哪就去哪(分数高),冥冥之中,自有天意~
最后祝大家都能选到理想的大学和心仪的专业!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31