北京CDA数据分析就业班50期学员
姓名kmell:庞同学
毕业院校:北京工业大学
专业:信息管理与信息系统
入职信息:玖富集团,数据分析师,北京
就业感言:
一、学习阶段:(远程版)
由于一些个人原因选择了远程学习的方式,较现场学习而言,从学习的态度和方法上都有很多不同之处。
首先,远程学习需要较强的自控力和持之以恒的耐心,并不会有人严格监督你的打卡和听课质量,所以在了解自身情况的基础上去选择适合自己的方式才是一个好的开端(自控力不足的小伙伴建议果断现场学习,理想很丰满现实很骨感)。持之以恒的耐心在于三个月的学习对我们来说并不是一个很短的周期,在整个学习的过程中,各模块知识点对你来说可能有难有易,有感兴趣的也有不太关注的,那么就需要去平衡他们,找到良性循环的方式:最基本的要保证听课的完整,因为无论哪部分内容总有你不太了解的知识点,先保证漏斗的开口足够大,才能为最终吸收的知识奠定基础;接下来要明确哪些内容是你的核心需求,因为人的精力都是有限的,不可能一上来就把方方面面学到极致,在学习前我们都应该明确自己的目的和目标,课程内容的设置也都能提前了解到,对于你的目标工作岗位的核心技术要求就是需要你重点关注的,那么无论难易都要花更多的时间精力去学习和练习,这些内容具体的排期你也要了解以便提前准备不受其他各种因素影响,比如SQL,统计知识等(像python和机器学习就要看每个人具体的目标岗位的设定了);三个月下来,我们并不需要保持每天时刻的高率学习(当然我们也做不到),而是应该有的放矢,劳逸结合,达到事半功倍的学习效果,这样也有助于我们保有持之以恒的耐心。
其次,学习方法上我使用三种模式(但对于远程小伙伴而已,保证这些模式效率的前提是你手边最好准备两台电脑,一台直播课程,一台跟着操作以及记录):
1. 对于熟悉或容易的知识点,上课用xmind做笔记,建立知识框架,紧跟课程节奏,熟悉的知识点简要记录,重要以及易忘的可以突出标记,课后根据框架梳理一遍并补全课上没记全的内容,例题和作业自己都再单独完成一遍,确保思虑清晰完整。
2. 对于不太熟悉且重点模块的知识,最好提前预习,不然上课就是完全懵(至少可以把涉及到的一些基本概念先理解一遍),上课遇到难点不理解的可以先记录之后找机会询问,尽量在当天多理解多记录多询问,还可以课间/晚自习讨论或上网搜一些资料答疑解惑,因为录播一般都是第二天课后才更新,当天课程如果落下太多可能会影响第二天的听课效果。但看录播复习也是重要一环,在整个课程的学习中,我对于不熟悉的知识点通常都会在后期观看2-3遍录播视频,每多学习后面的一部分知识再回过来复习前面的内容都会有新的认知理解和收获,同时对于知识点之间的连接也非常有帮助。
3. 对于知识的运用是我们学习的最终目的,所有的理论知识也都是为了支持实践,第三个模式贯穿整个学习过程,就是建立一个练习文件夹,像SQL,Python可以搜罗一些练习题来熟悉命令操作等。其他模块可以利用网上的数据或自己工作上的数据甚至是老师提供的练习数据,去作为一个分析项目来完成,从数据提取,清洗整理,描述性统计甚至建模做一些挖掘工作,到最终的数据可视化及数据分析结论报告的产出。项目输出的完整性既有助于我们把各部分知识整合起来,还锻炼了分析问题的思路,从中我们还会遇到很多实际问题,去解决,去优化,切身感受数据分析工作中的点滴(课程后期的案例和你自己学习过程中完成的一个个小项目都可以作为将来面试中的项目经历)。
二、就业阶段:
对于找工作的过程,我总结了几个关键点:
1. 准备要充分:如果说前面的三个月的学习都是纸上谈兵,那么找工作就开始真枪实干了,请拿好枪再上战场,不然一次次的失败可能会让你失去勇气和信心。简历和面试技巧在面试前老师都会协助我们做准备,但面试终究是要自己单打独斗,所有写在简历上的内容以及从面试时说出来的话,都必须是我们提前准备好且对答如流的,不然干脆就不要提及(这是亲身踩过的坑,不要给自己挖坑)。
2. 面试节奏和优先级安排:建议趁刚学完对知识比较熟悉的时候保持每天2个的面试量,岗位或公司不太满意的也不要一味拒绝,可以排在理想公司面试的前面,作为一个锻炼自我的机会,完善面试经验,为后续更好的发挥做铺垫。
3. 保持良好心态:心态为什么重要?如果你的能力不行,那么心态再好也没法通过面试,但是如果因为前期的失利导致自己心态崩了,不自信,破罐破摔不好好去准备后面的面试,那么那些本可以抓住的机会可能也就此错过了,导致陷入恶性循环,所以正视每一次的面试结果,总结问题。
最后,希望小小分享可以给小伙伴们带来一些帮助,也祝愿大家都能通过学习丰富自己,最终get到自己理想的工作
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13