作者 | Necati Demir
翻译 | CDA数据分析研究院
我们到处都看到有关AI的新闻,有时,我们会看到AI领域一些激动人心的事情,有时我们也会看到一些有关人工智能如何取代或破坏我们工作的文章。偶尔,我们还会看到一些文章谈论人工智能将如何摧毁人类。
在这篇文章中,我不会讨论普遍性的人工智能或者想要摧毁人类的邪恶AI。我将重点关注当前的AI,它主要基于可以进行预测的算法,并讨论AI的经济学如何运作以及它如何影响业务。我还想提一下,本文的内容受到以下两方面的高度影响——预测机器:人工智能的简单经济学和人机结合:人工智能时代的工作重构。
本文分为三个主要部分:
技术的演变
在开始之前,我想讨论一些类似于我们今天如何看待人工智能的历史事件之间的相似之处。我将举例说明特定技术的广泛使用如何改变了我们的思维方式。
电子计算机时代
计算机做的最好的是算术。在我们熟悉的计算机出现之前,术语“计算机”被用于描述那些进行文字计算的人,我们称之为“ 人类计算机”。
随着技术的进步,计算变得更加便宜和快速,我们开始考虑算术方面的一切。摄影是一个很好的例子 - 历史上,修改或应用视觉效果到照片是一种化学反应。然而,现在,我们使用艺术家和摄影师均可访问的算法,通过各种软件将效果以数学方式应用于照片。
这是我们在商品/服务成本下降时如何思考的一个很好的例子; 我们开始考虑如何应用新技术来解决我们当前遇到的问题。AI也是如此。
互联网时代
当互联网被广泛使用时,它在各个行业都取得了巨大的变化,而这一切都是关于不同领域的成本降低。例如,分销商品和服务的成本变得更低,这引发了电子商务行业的诞生。公司最终改变了他们的战略,要么幸存,要么死亡。
一旦商品或服务的成本下降,我们就会更频繁地使用它,我们也可以在网上看到这一点。这也改变了我们的心态,我们将整个行业转移到网上。除了电子商务,另一个例子可以在搜索引擎的使用中看到:我们不再使用百科全书来搜索信息,而是使用Google或其他搜索引擎。
人工智能的时代
人工智能的成本在计算能力和工具方面变得越来越便宜。每个新工具/库都有助于机器学习开发人员在预测问题上花费更少的时间。例如,Google的TensorFlow,AutoML甚至scikit都可以作为示例显示。我们还可以将GPU计算的使用量增加,作为人工智能成本降低的一个例证。
对公司下一季度的销售预测是一个明显的预测问题,但开发自动驾驶汽车并不是十年前的预测问题。人工智能的成本降低正在改变我们的思维方式,这意味着我们开始将各种问题视为预测问题。我们已经在工厂等受控环境中使用自动驾驶汽车,可以使用if-else 编程条件对车辆进行编程 。改变思维方式并将其视为预测问题,帮助工程师开发可在野外使用的自动驾驶汽车。
基本上,这就是它的工作模式:一名工程师教人工智能在不同条件下人类会做什么,这使得车载软件的诞生成为可能,驾驶员可以使用数千英里的汽车,而不是在数百英里之后疲惫不堪。人工智能学会了人类会做什么,并开始预测它应该做什么。这是在预测方面考虑问题的一个非常好的例子。
战略
这是一个主要问题:AI会影响公司的战略和商业模式吗?如果您认为AI是一种可以帮助您做出决策的预测工具,那么它可能无法清楚表达它将如何影响策略,因为它只是帮助您做出决策的另一个工具。但是,如果您开始将AI视为可以高精度预测的预测工具,那么可能会改变策略本身。《 预测机器:人工智能的简单经济学 》一书中有一个很好的例子 。
当我们从亚马逊购买和购买商品时,它会将包裹运送到我们的办公室/家中。因此,这种方法可以称为购物然后运输方法。我们也知道亚马逊有一个推荐引擎,它会在您浏览页面时推荐项目。我们不会购买所有推荐商品,但它至少会推荐我们可能感兴趣的商品。让我们假设亚马逊开始预测您将以高精度购买的商品。如果您开始购买80%的推荐商品,亚马逊可能会决定在购买之前发送商品 - 我们称之为发货 - 然后购物。这是业务战略的一个明显变化,因为一旦项目到达您的家,您将发回20%的商品,并且当前的亚马逊价格建模不基于此假设。也许,亚马逊将决定每周向您的城市发送一辆卡车以收集退回的物品,这将完全改变亚马逊如何收取您的信用卡,如何打包物品以及如何处理退回的物品。所有这些策略的改变都是人工智能的好处,它具有更高的预测准确性。
我相信我们可以通过考虑如果AI能够以更高的准确度预测将会发生什么来研究像以前的亚马逊例子那样的更多思想实验。
人与人之间的互动
人类和人工智能的互动将来会如何发展?他们会竞争,还是会一起工作?我将通过阅读《人类+机器:在人工智能时代重构工作》这本书来关注这些问题 。这本书的作者说,有些情况下人类可以补充人工智能,人工智能也可以补充人类。
人类补充AI
人类可以在三个方面补充AI:训练,解释和维持。
训练
AI需要学习数据,这称为 训练阶段,因此它可以进行预测。
将来,我们可能会有训练代理商,专门根据该业务的要求专注于训练AI。如果是工厂,训练代理可以负责训练机器人; 如果是电子商务业务,训练代理可能负责汇总历史数据。
解释
我们需要了解AI如何以及为何为特定问题提供特定答案。
通常,我们在可解释性和AI的准确性之间进行权衡。与易于解释的方法相比,黑盒AI方法具有更高的准确性。尽管有一些工具可以解释为什么黑盒AI会做出特定的预测,但我们可能需要一个可以理解和解释AI结果的工作角色。
维持
我们需要确保AI按预期运行。
2015年,大众汽车工厂的一个机器人抓住了一名工人并致命地粉碎了他。我们可能需要负责确保AI系统按预期工作的角色。
AI补充人类
人工智能的潜力为人类提供了超级大国,因为人工智能可以比人类更快,更精确地进行预测。这些超级大国可以用它们带给特定情况或行动的价值来表达。
放大
AI工具可以帮助人类提高人类的能力。在《人类+机器:人工智能时代的重构工作》一书中 ,作者使用了Autodesk的Dreamcatcher软件的例子,该软件使用遗传算法来迭代可能的设计。
设计师可以借助此工具设计出便宜且坚固的椅子灯。AI尝试创建基于给定标准的设计,并将结果提供给设计人员。然后,设计师使用选择的设计之一,并在该设计上使用他们的创造力来进行最后的润色。
这类似于计算机时代计算机给人们提供的帮助 - 就AI可以提供哪些帮助而言,这是一个新的令人兴奋的能力水平。
相互作用
AI可以充当助手,通过与他们互动来帮助他们。亚马逊的Alexa,Google Home和Apple的Siri都是这种交互式AI代理的突出例子。随着每次迭代改进这些代理,我们将更频繁地开始使用它们,它将成为我们的一部分,就像我们使用智能手机所做的更深层次的版本。那些代理人将是我们的私人助理,他们将补充我们。
增加
在工厂中可以找到以AI为燃料的物理增强的例子。虽然工厂现在由机器人操作,但它们大多是基于规则的系统并且放在笼子里以确保安全。机器人将作为同事来帮助人类,其设计目的是在工厂内自由移动和工作时不伤害他人。
结论
梅赛德斯生产计划负责人马库斯·谢弗(Markus Schaefer)表示,虽然有些人担心“机器人效率更高,但未来人类工人将被丢弃”,他说:“我们正在努力实现自动化最大化工业过程中更重要的一部分。“新技术确实给我们的工作方式带来了巨大的变化,但是犁的发明并没有消除对农场工人的需求,计算机的发明也没有消除对数学家的需求。与所有技术革命一样,人工智能的出现将用于帮助人类达到新的范式,而不是完全取代它。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10