作者 | Mariya Fox
编译 | 顾家彤、彭艺
人工智能已经成为技术圈的热点话题。它不仅改变了人们的生活,也彻底改变了你能想到的所有产业。
不过,大众对人工智能还有着不同的认识。有些人认为人工智能不好,因为他们听说人工智能在未来会取代一些人的岗位。而人工智能的支持者认为,人工智能是一个社会发展的推动因素,它将通过自动化来减轻负担,让人们的生活更加便捷。
不管你是否喜欢人工智能,如果你对人工智能在未来的影响感兴趣,那么请看看这篇文章,我们将介绍一些主导人工智能发展的趋势。
启用人工智能的芯片将成为主流
与其他技术和软件工具不同,人工智能主要依赖专业的处理器。为了适应人工智能的复杂需求,芯片制造商将研发能够运行启用人工智能的特制芯片。甚至像谷歌、脸书和亚马逊等科技巨头也会在这些特制芯片上投入更多资金。这些芯片会被用于与人工智能相关的特殊用途,比如自然语言处理、计算机视觉领域和语音识别。
人工智能和物联网在边缘计算层相遇
2019年是不同技术与人工智能融合的一年。物联网将在边缘计算层与人工智能携手合作。产业物联网将利用人工智能的强大功能进行根本原因分析、执行机器的预测性维护和自动检测问题。
我们将在2019年看到分布式人工智能的兴起。智能将被分散,并且将更靠近正在进行例行检查的资产和设备。由神经网络驱动的高度复杂的机器学习模型将被优化,以便在边缘运行。
迎接自动化机器学习系统
自动化机器学习系统是2019年人工智能产业最显著的发展趋势之一。有了自动学习的能力,开发者能够修补机器学习模型,创造准备好迎接未来人工智能挑战的机器学习新模型。
自动化机器学习系统将介于认知应用程序编程接口和定制机器学习平台之间。自动化机器学习系统最大的优势是,它向开发者提供了他们要求的自定义选项,同时简化了工作流程。当你把数据和可移植性相结合,自动化学习系统可以为你提供其他人工智能技术不具有的灵活性。
拥抱智能运维
当人工智能用于应用程序时,它将改变我们管理基础架构的方式。 DevOps将被智能运维取代,它将使你的IT员工能够进行精确的根本原因分析。此外,它还可以让你轻松地从庞大的数据库中立即找到有用的见解和模式。大型企业和云供应商将受益于DevOps与人工智能的融合。
神经网络集成
在开发神经网络模型时,人工智能开发人员将面临的最大挑战之一是选择最佳框架。有了市场上的数十种人工智能工具,选择最好的人工智能开发工具可能不像以前那么容易。不同神经网络工具包之间缺乏集成性和兼容性,这阻碍了人工智能的采用。微软和脸书等科技巨头已经在开发开放式神经网络交换(ONNX),允许开发人员跨越多个框架,重新使用神经网络模型。
专业的人工智能系统成为现实
市场对专业系统的需求将在2019年成倍增长。各组织拥有的数据有限,但他们想要的是专业数据。这样的需求会驱动企业掌握可以帮助组织在内部生成高质量人工智能数据的工具。
2019年,重点将从数据量转移到数据质量。这将为可以在现实世界中发挥作用的人工智能奠定基础。企业将寻求能够专业人工智能解决方案提供商,帮助企业访问关键数据源,理解非结构化数据。
人工智能技术将决定你的命运
虽然人工智能已经改变了你能想到的所有行业,但业界仍然缺乏拥有大量人工智能技能的人才。Espressive(加拿大电脑软件公司)的首席执行官帕特卡尔·霍恩(Pat Calhoun)说:“大多数组织都希望将人工智能作为数字化转型的一部分,但没有兑现承诺——让开发人员、人工智能专家和语言学家开发解决方案,甚至没有培养预先构建解决方案的引擎。
Awake Security(美国加利福尼亚州的威胁检测厂商)的首席执行官拉胡尔·卡什亚普(Rahul Kashyap)补充说:“有这么多人工智能驱动解决方案,企业现在应该更敏锐地了解他们的人工智能解决方案的‘黑匣子’中发生的事情。”他继续说道:“人工智能算法的训练、结构化或通知方式可能会导致输出的显著差异。适用于一家公司的正确方程将不适用于另一家公司。”
人工智能可能会被不法之徒利用
就像硬币有正反两面一样,人工智能也有正面和负面影响。信息安全专家将使用人工智能来快速检测恶意活动。借助人工智能驱动的响应和机器学习算法,误报将减少90%。人工智能如果落入不法分子手中,网络犯罪分子将滥用它来完成他们的恶意企图。通过自动化,网络黑客的军队可以更成功地发动致命攻击。这将迫使企业以毒攻毒,投资人工智能驱动的安全解决方案。这些方案能够保护他们免受人工智能发起的攻击。
人工智能驱动的数据转化
2019年,人工智能无处不在。从网络应用到医疗保健系统,从航空公司到酒店预订系统等,我们能在每个地方看到人工智能,它将处于数字化转型的最前沿。
夏威夷大学IT部门主席兼教授董贝博士(Dr.Tung Bui)说:“由于制度、政治和社会原因,人工智能发展需要时间。我认为人工智能的最大趋势将是加速数字化转型,使现有的业务系统更加智能化。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30