作者 | Saurabh Hooda
来源 | CDA数据分析研究院
简短的回答是肯定的。只要数据科学家中存在“数据”,结构化查询语言(或我们称之为“quel”)将仍然是其中的重要部分。本文将深入探讨数据科学及其与SQL的关系,包括5 W和1H的答案 - 如何,为什么,何地,何时,谁和什么。我们还将学习数据库管理系统(DBMS)的基础知识,并了解数据科学家如何成为您职业生涯的最佳选择。
什么是数据科学
数据科学的视角非常广泛,作为一名数据科学家需要深入了解各种数学流,机器学习、计算机科学、统计研究、数据处理以及多个领域的专业知识。这些数学流中的每一种知识系统都需要对数据进行大量地研究和探索,无论是收集、分析还是处理。
为什么数据科学如此受欢迎
目前来说数字世界正处于巅峰时期,随着市场需求和广泛营销策略的不断增长,数据已成为所有营销目的的关键。例如,如果我想购买一部新手机,我会去亚马逊或Flipkart这样的网上商店,浏览不同的品牌,挑选心仪的品牌手机添加到我的购物车中,最后经过一些对比研究后决定购买。在网站后台,在线商店会保存我的购物车信息和浏览历史记录,并在我下次登录时向我展示更多相关品牌的手机推荐。即使我不买,在线商店也会给我发电子邮件或短信,提醒我购物车里的商品“还在等着我”。 因此,数据在建立买卖双方关系中起着至关重要的作用。客户展现的历史行为数据越多,向买方呈现的个人定制化推荐程度就越高。这种个性化推荐算法不仅适用于电子商务,也同样适用于各行各业用户价值分析和个性化营销方案中。
怎么样实现
数据在哪里
所有的数据都存储在数据库中。因此,SQL对于处理需要定期加工和转换的大量数据至关重要,同时它也是数据科学打算做的精准营销和用户反馈的重要工具。例如,如果您不喜欢Facebook给您推荐的视频,您可以选择'隐藏此项',Facebook会立即向您询问隐藏原因。用户的这些选项数据也需要存储在数据库中。
通过像SQL这样的关系数据库,数据科学提供了一个连续的系统来处理和改进数据的呈现和处理方式。
SQL应用领域
SQL是整个数据科学领域的重要组成部分。但是,在企业实际业务工作中它究竟适用于哪些工作呢?如果您想成为数据分析师,数据工程师或数据架构师,您将需要学习SQL以及C,R和Python等编程语言。这是一个简单的图表,显示了使用SQL的阶段:
图片中突出显示的交集部分是我们需要SQL知识的地方:大数据,大数据分析和数据分析。
为何选择SQL
尽管NoSQL数据库提供了高性能和高速度,但SQL数据库仍然被广泛用于所有实际业务工作中。有更多的开发人员了解SQL技术,因此支持和翻译帮助文档使其更加丰富。此外,数据完整性是使SQL与任何NoSQL数据库分开的一个关键因素,通过确保没有重复或未经授权的数据可以进入系统。此外,对于复杂的查询和连接,结构良好的关系数据库可以更好地管理数据。
什么是SQL
SQL是一种关系数据库管理系统,用于存储,检索,更新和读取数据库中的数据。
在本文中,我们将专注于SQL如何对数据科学起作用。让我们举一个简单的例子,说明您作为数据科学家如何使用SQL来收集和分析数据。
假设您想通过检查有多少用户订购它的副本来了解作者'Carl Shan'的一本名为'The Data Science Handbook'的书的受欢迎程度。因为SQL是具有适当模式的结构良好的语言,所以您可以使用如下结构:
customer table
order_details table
book table
要获取此类数据,我们需要使用一些关键字段或主键和外键字段来连接这三个表。在这种情况下,order_id对于所有三个表都是共有的关键字段,可以用来作为连接字段,使用这些连接后的数据,我们可以编写查询语句来获取必要的字段信息。
在现实生活中,这种系统可以处于多个层次的分析需求中,我们需要使用SQL分析和处理大量数据。来自数百万用户的日常行为记录数据被存储在SQL数据库中,用于不同目的的分析需求。想象一下,在不使用SQL的情况下我们能够完成这些海量数据的处理和分析工作吗?
虽然有些人认为SQL在数据科学家工作中的作用正在减少,但事实并非如此。SQL在数据分析工作中依然十分的重要。
以下是数据科学家应该了解的一些关键SQL概念:
谁应该学习SQL
到现在为止,您应该明白SQL相关从业者是否可以成为数据科学家以及如何成为一名数据科学家。如果您对数据非常感兴趣,并希望将数据科学作为您的职业选择,那么您一定要学习SQL。
数据科学家作为职业选择
当今社会每天都会产生大量数据,需要将其转换为新的业务解决方案,设计和产品,这些只能来自数据科学家的创造性思维。这种需求至少会在几十年内增加。除了行业为数据科学家提供的脂肪包之外,吸引专业人士参与这项工作的挑战和不断增长的角色也是如此。从数据管理员,数据架构师,数据分析师,业务分析师到数据管理员或商业智能经理,在数据科学圈中有很多机会可供选择。了解SQL,R和Python等编程语言,统计和应用数学,结合批判性思维和行业知识,可以比你想象的更快。
作者:Saurabh Hooda曾在全球范围内为各种电信和金融巨头工作。在Infosys和Sapient工作了十年之后,他开始了他的第一家创业公司Leno,以解决超本地书籍共享问题。他对产品营销和分析感兴趣。他的最新企业Hackr.io为每种编程语言推荐了最好的数据科学教程和在线编程课程。所有教程都由编程社区提交并投票。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31