作者|陈枫、蒋馨怡
来源|读芯术
表弟,00后,刚上大学的青年才俊,21世纪电子产品消费主力军,新科技的狂热爱好者。
前两天华为mate 20 X 5G版首发,他联合全家七大姑八大姨帮抢新机。就算明年5G机铁定降价也挡不住他要“抢头柱香”的热情。
10:08,全家各大平台聚精会神拼手速,就那么老眼昏花般的一秒,全部售罄。
恍惚一下,回到了最初的2G时代,刚上大学我有了人生中第一部手机——诺基亚7650。至今也忘不了30W像素带来的震撼,还有滑动翻盖时的顺畅和奢华。
2002年至今,不到20年,5G已然来临。我们已经无法清楚回想2G的蜗速。00后也不知道那时诺基亚的贪吃蛇有多好玩。
拉长时间线,才发觉“世上已千年”。
下一个改变世界的是什么?
自计算机发明之后,人类一直在寻找“下一件改变世界的大事”。虽然当下大多数人使用的手机都比最早问世的超级计算机快,但身处时代之中的人们,还是很少去认识,或者反思世界变化的速度和方向。
大数据、人工智能和物联网是近年来被滥用最多的三个术语,许多人不知道这三个技术是如何联系在一起的,也不知道它们如何为我们所期望的技术进步铺平的道路。
本文将阐述这些概念,并进一步探讨它们在工业中的重要性、面临的阻碍以及未来的发展方向。
“数据”和信息的大爆炸
1989年,在万维网发布之后的几年中,互连的机器数量大幅增加。1994年至2000年间,当GPS变得切实可行时,计算机和连接设备产生的数据量急剧增加,该设备网络的潜力很快就发挥出来了。
1999年,“物联网”这个术语首先由麻省理工学院的凯文·阿什顿(Kevin Ashton)创造,他假设:“如果计算机知道世上所有事物的知识,那么它们会在没有任何人类帮助的情况下使用自己收集的数据。这样一来,我们能够跟踪并计算所有内容,大大减少浪费、损失和成本。”
随着GPS技术的兴起,RFID标签用于会员卡系统,掌上电脑市场升温,企业能够“看到”他们的流程,而且各种条件都非常适合信息爆炸的出现。由于现有工具处理的数据量过多,2005年,Roger Mougalas首次使用“大数据”这一术语。
2007年iPhone的推出标志着“大数据”进军消费领域,从那时起,智能手机、可穿戴设备、平板电脑和各种智能设备的崛起改变了我们对物理世界和数字世界的看法。
大变化:数据的存储和应用
与此同时,社交媒体和电子商务的兴起也导致了“数字角色”概念的出现,数据的惊人价值越来越有目共睹。21世纪也出现了公司专门成立的数据部门,以帮助企业管理组织数据并用其来改进流程。
联合创始人兼LatentView Analytics主席Venkat Viswanathan在消费者营销领域体验到了数据的力量,并对商业环境也产生了兴趣。Viswanathan表示,“实现这一转变是由于数字化的数据更加精细,公司正在从消费者领域获取创意,并将其应用于行业中。”
工业环境已经被用于技术和数据的收集,因为仅使用数据就可实时影响下达的决策,如检查压力水平、温度等。直到专业传感器的数据变得精细化及存储成本的下降时,人们才考虑将数据存储起来供以后分析使用。Viswanathan说:“随着存储成本下降以及云存储在过去5至8年间投入使用,我们终于有机会回顾历史数据并发现数据当中的模式。”
大数据为AI提供无限可能
一旦数据存储成为各个企业的可行选择,云就可以收集庞大而详细的数据集,人工智能终于有了坚实的基础。多年来,人工智能研究经历了多次研究,其中算法技术的发展由于兴趣或投资的缺乏而陷入困境。
随着越来越多数据的可用性的增强,人工智能研究分为越来越细的应用,最新一代算法在基础领域取得了巨大的进步,例如自然语言处理、计算机视觉和机器翻译,这是因为出现了数量巨大且可供学习的信息。
可用于训练的各种来源的数据的激增,使得人工智能系统获得了巨大的改进,这种现象被称为“数据的不合理有效性”,这表明即使是简单的算法,只要有足够的数据,也可以得出准确的结论。结合几十年的工作来完善这些算法,从而去执行类人化的表现而完成特定的任务,人工智能终于有了值得全力以赴的一面——用于获取有现实意义的结果。
大数据的发展必然推动了人工智能领域,正如红木软件首席问题解决官Devin Gharibian-Saki所说:“人工智能系统的运行基于统计模型,因此如果没有大量数据来支持人工智能,就无法运行人工智能。”
物联网、AI和大数据是一个硬币的三面
现在,我们可以运用大量传感器、物联网设备,甚至是用户数据,在所有业务领域进行预测和决策,但前提是用户必须了解这些数据的含义和来源。“你必须知道你最终想要什么,否则,所有数据、技术和传感器都是无用的。”Gharibian-Saki说道。特别是在一个任何可测量的环境中,数据丢失的风险比以往更大。企业必须记住,孤立地使用物联网、大数据或人工智能无法快速取胜,Gharibian-Sak接着说:“我们总是寻找能够解决所有问题的一个方案,但物联网设备、传感器、机器人技术和人工智能是同一系统中的不同所有组成部分,如果没有这种整体观点,将需要很长时间才能取得巨大成功。”
物联网、大数据和人工智能相互融合并创建自动化生态系统。物联网设备收集数百万条标准的数据,然后在云中进行整理,用于训练和改进人工智能算法。物联网、大数据和人工智能相互联系,相互促进。未来,必将带来新世界的巨变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31