作者 | DD-Kylin
来源 | 木东居士
0x00 前言
我们知道,回归模型可以解决因变量为连续变量的问题,但是,如果因变量为分类变量的话,用回归的方法就行不通了。这个时候我们就得选择用其他的分类方法了,如决策树、随机森林、SVM等。而本篇文章要说的逻辑回归也是一种很好的分类方法。我们需要明确的一点是,逻辑回归虽然是“回归”,但是它本质上是一种二分类算法,用来处理二分类问题的。
0x01 走近逻辑回归
问题1:你能说说什么是逻辑回归吗?
回答:逻辑回归是一种二分类算法,一般用来解决二分类问题,但是它也可以用来解决多分类问题,当使用它来解决多分类问题的时候,由于逻辑回归的特点,我们一般将多分类问题转化为二分类问题。这里多分类问题的转化有三种拆分策略,分别是一对一、一对其余和多对多。通过多分类拆分策略,我们可以使用逻辑回归来进行多分类问题的预测。但是这种方法我们一般不用,因为多分类问题我们可以使用随机森林、朴素贝叶斯、神经网络这些更好的算法进行预测。
问题2:逻辑回归是二分类算法,那它究竟是如何进行分类的?
回答:逻辑回归是通过判断数据属于某一类的概率值大小来决定要将该数据判为哪一类。这里需要引入sigmoid函数(Y = 1/(1+e-z) , 其中z = wTx+b
),而sigmoid函数有一个很特殊的性质,那就是它可以将任意的输入值都转为(0,1)上的输出。逻辑回归通过sigmoid函数来逼近后验概率p(y =1 |x),一般地,会将sigmoid函数输出值大于0.5的判为正例(即1),将输出值小于0.5的判为反例(即0)。
sigmoid函数的图像如下:
0x02 再会逻辑回归
问题1:逻辑回归进行分类时的阈值是一定的吗?可不可以人为地进行调整呢?
回答:不一定。可以通过人为地进行修改的。逻辑回归输出的是概率,即将Sigmoid函数输出的y视为正例的可能性,我们可以自定义分类阈值来改变分类的结果。
举个栗子,在邮件分类中,如果sigmoid函数输出某个邮件属于垃圾邮件的y值是0.6,属于有用邮件的y值是0.4。即P (y = 垃圾邮件|已知条件) = 0.6,
相对应的 p(y = 有用邮件|已知条件) = 0.4。
在本例中,如果是将p>0.5视为垃圾邮件,那么判这封邮件为垃圾邮件;如果是将p>0.7视为垃圾邮件,那么会判这封邮件为有用邮件。一般情况下默认数据属于哪一类的可能性较大就将数据判为哪一类,但是由于逻辑回归输出的是概率值的这一特性,所以我们可以根据具体的情况自定义阈值来得到更切合实际应用场景的模型。
问题2:逻辑回归中的极大似然法是用来做什么的?
回答:因为sigmoid函数中,z = wTx+b,其中 w和b都是未知的,使用极大似然估计法是为了求出w和b使得每个样本属于其真实标记的概率值越大越好。 但是最大化似然函数的求解有点困难,所以将其转为求解最小值,即在求得的目标似然函数前面加上一个负号转为求解最小值。由于改变符号后的目标函数是高阶可导连续凸函数,于是可以使用梯度下降法、牛顿法等来求解它的最小值,通过函数的转化就可以较为轻松地求出w和b,进而也就能知道sigmoid函数的输出了。
注:逻辑回归是一种判别模型
问题3:逻辑回归有哪些应用?
回答:逻辑回归的应用其实跟它的算法特点有很大的关系。由于逻辑回归是一种性能很好的二分类算法。所以逻辑回归几乎可以应用于任何需要二分类的问题。如癌症检测、垃圾邮件分类、广告点击预测、医疗效果分析等。
0x03 优点VS缺点
问题:逻辑回归的优点是什么?缺点又是什么?
回答:
逻辑回归的优点分别是:
逻辑回归的缺点分别是:
0x04 总结
关于逻辑回归,我一直觉得它是一个很简单但是很强大的算法,直到在写这篇文章的时候,才发现原来它有那么多知识点需要理解。本文也只是起到一个抛砖引玉的作用,如果大家想了解更多的话,建议各位可以去看一下书,练一下真实的案例,肯定可以收获更多的理解!下面留几个讨论题:
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16