作者 | Destiny
来源 | 木东居士
0x00 前言
在之前的文章中,已经分享过如何根据数据可视化的目的、数据关系和特征,去选择合适的图表类型。当确定了要使用哪些图表进行数据可视化后,就开始进入可视化作品的设计阶段。从大的方向上来说,影响数据可视化最终效果的因素,分为两个层面:
因此,今天这篇文章,主要从以上两个层面,来总结提升可视化效果的一些经验,从而使数据信息的传达更聚焦、有效,可视化作品的视觉呈现更加美观。
0x01 非数据层面
1.布局要强调最重要的数据信息,将用户注意力集中在可视化结果的最重要区域
在进行某一主题的可视化作品设计时,我们需要根据用户关注的重点数据,对可视化结果的重要性和优先级进行排序。通过对可视化空间的合理布局设计,将用户的注意力集中到可视化结果中最重要的一个或几个区域上。
通常情况下,用户的视觉中心,是位于整个页面的上方和中心区域。如果只有一个重点,放在最显眼的位置,如果有几个重点,尽量集中放置,吸引视觉焦点。除了通过重要信息的位置摆放来吸引用户视觉焦点,还可以通过突出的颜色编码来抓住用户的注意力。
下图为一个汽车经销商的客服监控大屏,对于他们而言,黄色框选的区域是他们关注的重点(1)呼叫量(含在线咨询和呼入咨询)。(2)不同客服沟通方式的满意率。(3)在线咨询和呼入咨询人群各自的地域分布。因此,把这三部分集中放在可视化空间的中心区域,可以让客服人员一眼就关注到重要的信息。
2.图表设计要隐藏不必要元素,弱化辅助元素
在我们进行图表绘制时,需要去掉无意义的背景色填充和颜色区分,弱化网格线,突出真正重要的数据信息。虽然,网格线或者颜色映射可以辅助我们理解可视化图表中的信息,但是如果过于凸显,视觉上会显得杂乱、没有主次,干扰到你真正想展示的信息。对于这类元素,应该尽量隐藏和弱化。
3.交互操作要具有直观性、易理解性
一方面,图表中柱形条或趋势点等都代表实际的数据,但是为了可视化作品的简洁和美观,通常情况下,这些数据标签都会被隐藏;另一方面,由于人们查看数据的习惯是,先看总体和趋势,再看局部和细节。这两个方面的原因,要求可视化产品,需要提供给用户一系列的交互手段,来让用户按照自己的意图和关注点去探索数据。
常见的交互方式有:
1)移动和缩放:当前空间只能显示有限的数据时,或者需要关注局部数据时,可以使用移动和缩放。
一般情况下,移动和缩放是同时使用的两个交互动作。对于移动而言,如果当前显示空间没有把数据展示全,需要把后一数据条露出一部分,指引用户可以进行移动操作;对于缩放而言,其目的一般是为了在更大的空间去查看局部的细节数据,一般也需要移动图表来配合。
2)悬停或点击
悬停的的目的,是为了查看某个对象的详细信息,通常会以弹窗或者「图例+数据」的形式展现。
点击的目的,通常是为了进行数据下钻,在这种情况下,需要通过设计传达给用户可以进行交互的信息,如鼠标悬停变手型、对象的颜色变化或者以文字指引等。
3)图表联动
多图表联动,是可视化中比较常见的一种交互方式,图表联动的前提条件是,多个图表的指标含有共同的维度属性,所以当聚焦于某个图表的某一维度下的属性值时,其他图表会联动变化。
其数据格式通常如下:按维度1中的属性值聚合,可以得到左侧的柱状图对应的数据;按维度2中的属性值聚合,可以得到右侧的饼图对应的数据。
0x02 数据层面
1.当数据项较多时,需要精简数据项,突出重点
2.对于趋势图,若趋势不明显时,坐标轴数值可以不从0开始
当数据差异较小,导致折线的波动范围比较小,走势起伏不明显,此时如果为了更清楚的看到数据的波动情况,坐标轴起始数值可以不从0开始,但是此时需要在页面提示用户,否则用户会误以为波动很大。
虽然,趋势图的主要目的,是查看数据的态势和波动规律,设置坐标轴不从0开始,可以更清晰的看到数据的起伏波动。但是,同时会给用户带来理解的成本,也有夸大差异的嫌疑,因此,不建议频繁使用。
注意:柱状图的坐标轴起点,必须从0开始,否则柱形条的高度就不能代表数据间的差异。
当类别名称太长时,虽然斜放可以避免重叠,但歪着头查看内容,和用户阅读的视觉习惯不符,此时可以考虑把柱条横向放置,把类别的名称置于柱条空隙之间或者柱形条左侧。
4.坐标轴需要做对应的单位转化
图表坐标轴的数值,受数据的大小影响,当数据较大时,一方面将坐标轴数值单位转化为我们熟知的K、W、M、亿需要一定的反应时间,另一方面较大的数值也会占用有限的可视化空间。因此,建议,在一个数据可视化平台内部,需要建立一套公共的单位转化规则,保证图表坐标轴单位转化规则的一致性。具体做法如下:
注意:一个图表中,坐标轴的数值单位需保持一致,一般是以最大数值的单位作为整个坐标轴的统一单位。
0xFF 总结
回顾上文的内容,提升可视化效果的Tips总结如下:
如若大家对提升数据可视化效果这方面,有一些自己的总结,欢迎评论区补充和交流~
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14