作者 | Edwin Lisowski
编译 | CDA数据分析师
XGBoost and Random Forest with Bayesian Optimisation
在这篇文章中,我们将介绍带有贝叶斯优化算法的两种流行的算法即XGBoost和随机森林,并指出这些算法的优缺点。XGBoost(XGB)和随机森林(RF)都是集成学习方法,并通过组合各个决策树的输出(我们假设基于树的XGB或RF)来预测(分类或回归)。
让我们深入比较一下 - XGBoost与Random Forest
XGBoost或Gradient Boosting
XGBoost每次构建一个决策树,每一个新的树都修正以前训练过的决策树所产生的错误。
XGBoost应用程序的示例
在Addepto,我们使用XGBoost模型来解决异常检测问题,例如在监督学习方法中。在这种情况下,XGB非常有用,因为数据集通常非常不平衡。此类数据集的示例是移动应用中的用户/消费者交易,能量消耗或用户行为。
优点
由于通过优化目标函数导出了增强树,基本上XGB可以用来解决几乎所有可以写出渐变的目标函数。这包括排名和泊松回归等内容,RF难以实现。
缺点
如果数据有噪声,XGB模型对过度拟合更敏感。由于树木是按顺序建造的,因此培训通常需要更长时间。GBM比RF更难调整。通常有三个参数:树的数量,树的深度和学习率,并且构建的每个树通常是浅的。
随机森林(RF)使用随机数据样本独立训练每棵树。这种随机性有助于使模型比单个决策树更健壮。由于RF不太可能过度拟合训练数据。
随机森林应用示例
随机森林差异性已被用于各种应用,例如,基于组织标记数据找到患者群。在以下两种情况下,随机森林模型对于这种应用非常有吸引力:
我们的目标是为具有强相关特征的高维问题提供高预测精度。
我们的数据集非常嘈杂,并且包含许多缺失值,例如,某些属性是分类或半连续的。
优点
随机森林中的模型调整比XGBoost更容易。在RF中,我们有两个主要参数:每个节点要选择的特征数量和决策树的数量。RF比XGB更难装配。
缺点
随机森林算法的主要限制是大量的树可以使算法对实时预测变慢。对于包含具有不同级别数的分类变量的数据,随机森林偏向于具有更多级别的那些属性。
贝叶斯优化是一种优化功能的技术,其评估成本很高。它建立目标函数的后验分布,并使用高斯过程回归计算该分布中的不确定性,然后使用获取函数来决定采样的位置。贝叶斯优化专注于解决问题:
max f(x)(x∈A)
超参数的尺寸(x∈Rd)经常在最成功的应用d <20。
通常设置甲IA超矩形(x∈R d:ai ≤ xi ≤ bi)。目标函数是连续的,这是使用高斯过程回归建模所需的。它也缺乏像凹面或线性这样的特殊结构,这使得利用这种结构来提高效率的技术徒劳无功。贝叶斯优化由两个主要组成部分组成:用于对目标函数建模的贝叶斯统计模型和用于决定下一步采样的采集函数。
据初始空间填充实验设计评估目标后,它们被迭代地用于分配N个评估的预算的剩余部分,如下所示:
我们可以说贝叶斯优化是为黑盒无导数全局优化而设计来总结这个问题。它在机器学习中调整超参数非常受欢迎。
下面是整个优化的图形摘要:具有后验分布的高斯过程、观察和置信区间以及效用函数,其中最大值表示下一个样本点。
由于效用函数,贝叶斯优化在调整机器学习算法的参数方面比网格或随机搜索技术更有效。它可以有效地平衡“探索”和“利用”,找到全局最优。
为了呈现贝叶斯优化,我们使用用Python编写的BayesianOptimization库来调整随机森林和XGBoost分类算法的超参数。我们需要通过pip安装它:
pip install bayesian-optimization
现在让我们训练我们的模型。首先我们导入所需的库:
#Import libraries
import pandas as pd
import numpy as np
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
我们定义了一个函数来运行贝叶斯优化给定数据,优化函数及其超参数:
#Bayesian optimization
def bayesian_optimization(dataset, function, parameters):
X_train, y_train, X_test, y_test = dataset
n_iterations = 5
gp_params = {"alpha": 1e-4}
BO = BayesianOptimization(function, parameters)
BO.maximize(n_iter=n_iterations, **gp_params)
return BO.max
我们定义了优化函数,即随机森林分类器及其超参数nestimators,maxdepth和minsamplessplit。另外,我们使用给定数据集上的交叉验证分数的平均值:
def rfc_optimization(cv_splits):
def function(n_estimators, max_depth, min_samples_split):
return cross_val_score(
RandomForestClassifier(
n_estimators=int(max(n_estimators,0)),
max_depth=int(max(max_depth,1)),
min_samples_split=int(max(min_samples_split,2)),
n_jobs=-1,
random_state=42,
class_weight="balanced"),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
n_jobs=-1).mean()
parameters = {"n_estimators": (10, 1000),
"max_depth": (1, 150),
"min_samples_split": (2, 10)}
return function, parameters
类似地,我们为XGBoost分类器定义函数和超参数:
def xgb_optimization(cv_splits, eval_set):
def function(eta, gamma, max_depth):
return cross_val_score(
xgb.XGBClassifier(
objective="binary:logistic",
learning_rate=max(eta, 0),
gamma=max(gamma, 0),
max_depth=int(max_depth),
seed=42,
nthread=-1,
scale_pos_weight = len(y_train[y_train == 0])/
len(y_train[y_train == 1])),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
fit_params={
"early_stopping_rounds": 10,
"eval_metric": "auc",
"eval_set": eval_set},
n_jobs=-1).mean()
parameters = {"eta": (0.001, 0.4),
"gamma": (0, 20),
"max_depth": (1, 2000)}
return function, parameters
现在基于选择的分类器,我们可以优化它并训练模型:
#Train model
def train(X_train, y_train, X_test, y_test, function, parameters):
dataset = (X_train, y_train, X_test, y_test)
cv_splits = 4
best_solution = bayesian_optimization(dataset, function, parameters)
params = best_solution["params"]
model = RandomForestClassifier(
n_estimators=int(max(params["n_estimators"], 0)),
max_depth=int(max(params["max_depth"], 1)),
min_samples_split=int(max(params["min_samples_split"], 2)),
n_jobs=-1,
random_state=42,
class_weight="balanced")
model.fit(X_train, y_train)
return model
我们使用AdventureWorksDW2017 SQL Server数据库的视图[dbo].[vTargetMail]作为示例数据,我们可以依据个人数据预测人们是否购买自行车。作为贝叶斯优化的结果,我们提取出了连续样本:
我们可以看到贝叶斯优化在第23步中找到了最佳参数,在测试数据集上得出0.8622 AUC分数。如果要检查更多样品,这个结果可能会更高。我们优化的随机森林模型具有以下ROC AUC曲线:
我们提出了一种使用贝叶斯优化在机器学习中调整超参数的简单方法,贝叶斯优化是一种更快的方法,可以找到最优值,而且比网格或随机搜索方法更先进。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16