
作者 | Edwin Lisowski
编译 | CDA数据分析师
XGBoost and Random Forest with Bayesian Optimisation
在这篇文章中,我们将介绍带有贝叶斯优化算法的两种流行的算法即XGBoost和随机森林,并指出这些算法的优缺点。XGBoost(XGB)和随机森林(RF)都是集成学习方法,并通过组合各个决策树的输出(我们假设基于树的XGB或RF)来预测(分类或回归)。
让我们深入比较一下 - XGBoost与Random Forest
XGBoost或Gradient Boosting
XGBoost每次构建一个决策树,每一个新的树都修正以前训练过的决策树所产生的错误。
XGBoost应用程序的示例
在Addepto,我们使用XGBoost模型来解决异常检测问题,例如在监督学习方法中。在这种情况下,XGB非常有用,因为数据集通常非常不平衡。此类数据集的示例是移动应用中的用户/消费者交易,能量消耗或用户行为。
优点
由于通过优化目标函数导出了增强树,基本上XGB可以用来解决几乎所有可以写出渐变的目标函数。这包括排名和泊松回归等内容,RF难以实现。
缺点
如果数据有噪声,XGB模型对过度拟合更敏感。由于树木是按顺序建造的,因此培训通常需要更长时间。GBM比RF更难调整。通常有三个参数:树的数量,树的深度和学习率,并且构建的每个树通常是浅的。
随机森林(RF)使用随机数据样本独立训练每棵树。这种随机性有助于使模型比单个决策树更健壮。由于RF不太可能过度拟合训练数据。
随机森林应用示例
随机森林差异性已被用于各种应用,例如,基于组织标记数据找到患者群。在以下两种情况下,随机森林模型对于这种应用非常有吸引力:
我们的目标是为具有强相关特征的高维问题提供高预测精度。
我们的数据集非常嘈杂,并且包含许多缺失值,例如,某些属性是分类或半连续的。
优点
随机森林中的模型调整比XGBoost更容易。在RF中,我们有两个主要参数:每个节点要选择的特征数量和决策树的数量。RF比XGB更难装配。
缺点
随机森林算法的主要限制是大量的树可以使算法对实时预测变慢。对于包含具有不同级别数的分类变量的数据,随机森林偏向于具有更多级别的那些属性。
贝叶斯优化是一种优化功能的技术,其评估成本很高。它建立目标函数的后验分布,并使用高斯过程回归计算该分布中的不确定性,然后使用获取函数来决定采样的位置。贝叶斯优化专注于解决问题:
max f(x)(x∈A)
超参数的尺寸(x∈Rd)经常在最成功的应用d <20。
通常设置甲IA超矩形(x∈R d:ai ≤ xi ≤ bi)。目标函数是连续的,这是使用高斯过程回归建模所需的。它也缺乏像凹面或线性这样的特殊结构,这使得利用这种结构来提高效率的技术徒劳无功。贝叶斯优化由两个主要组成部分组成:用于对目标函数建模的贝叶斯统计模型和用于决定下一步采样的采集函数。
据初始空间填充实验设计评估目标后,它们被迭代地用于分配N个评估的预算的剩余部分,如下所示:
我们可以说贝叶斯优化是为黑盒无导数全局优化而设计来总结这个问题。它在机器学习中调整超参数非常受欢迎。
下面是整个优化的图形摘要:具有后验分布的高斯过程、观察和置信区间以及效用函数,其中最大值表示下一个样本点。
由于效用函数,贝叶斯优化在调整机器学习算法的参数方面比网格或随机搜索技术更有效。它可以有效地平衡“探索”和“利用”,找到全局最优。
为了呈现贝叶斯优化,我们使用用Python编写的BayesianOptimization库来调整随机森林和XGBoost分类算法的超参数。我们需要通过pip安装它:
pip install bayesian-optimization
现在让我们训练我们的模型。首先我们导入所需的库:
#Import libraries
import pandas as pd
import numpy as np
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
我们定义了一个函数来运行贝叶斯优化给定数据,优化函数及其超参数:
#Bayesian optimization
def bayesian_optimization(dataset, function, parameters):
X_train, y_train, X_test, y_test = dataset
n_iterations = 5
gp_params = {"alpha": 1e-4}
BO = BayesianOptimization(function, parameters)
BO.maximize(n_iter=n_iterations, **gp_params)
return BO.max
我们定义了优化函数,即随机森林分类器及其超参数nestimators,maxdepth和minsamplessplit。另外,我们使用给定数据集上的交叉验证分数的平均值:
def rfc_optimization(cv_splits):
def function(n_estimators, max_depth, min_samples_split):
return cross_val_score(
RandomForestClassifier(
n_estimators=int(max(n_estimators,0)),
max_depth=int(max(max_depth,1)),
min_samples_split=int(max(min_samples_split,2)),
n_jobs=-1,
random_state=42,
class_weight="balanced"),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
n_jobs=-1).mean()
parameters = {"n_estimators": (10, 1000),
"max_depth": (1, 150),
"min_samples_split": (2, 10)}
return function, parameters
类似地,我们为XGBoost分类器定义函数和超参数:
def xgb_optimization(cv_splits, eval_set):
def function(eta, gamma, max_depth):
return cross_val_score(
xgb.XGBClassifier(
objective="binary:logistic",
learning_rate=max(eta, 0),
gamma=max(gamma, 0),
max_depth=int(max_depth),
seed=42,
nthread=-1,
scale_pos_weight = len(y_train[y_train == 0])/
len(y_train[y_train == 1])),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
fit_params={
"early_stopping_rounds": 10,
"eval_metric": "auc",
"eval_set": eval_set},
n_jobs=-1).mean()
parameters = {"eta": (0.001, 0.4),
"gamma": (0, 20),
"max_depth": (1, 2000)}
return function, parameters
现在基于选择的分类器,我们可以优化它并训练模型:
#Train model
def train(X_train, y_train, X_test, y_test, function, parameters):
dataset = (X_train, y_train, X_test, y_test)
cv_splits = 4
best_solution = bayesian_optimization(dataset, function, parameters)
params = best_solution["params"]
model = RandomForestClassifier(
n_estimators=int(max(params["n_estimators"], 0)),
max_depth=int(max(params["max_depth"], 1)),
min_samples_split=int(max(params["min_samples_split"], 2)),
n_jobs=-1,
random_state=42,
class_weight="balanced")
model.fit(X_train, y_train)
return model
我们使用AdventureWorksDW2017 SQL Server数据库的视图[dbo].[vTargetMail]作为示例数据,我们可以依据个人数据预测人们是否购买自行车。作为贝叶斯优化的结果,我们提取出了连续样本:
我们可以看到贝叶斯优化在第23步中找到了最佳参数,在测试数据集上得出0.8622 AUC分数。如果要检查更多样品,这个结果可能会更高。我们优化的随机森林模型具有以下ROC AUC曲线:
我们提出了一种使用贝叶斯优化在机器学习中调整超参数的简单方法,贝叶斯优化是一种更快的方法,可以找到最优值,而且比网格或随机搜索方法更先进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10