
作者 | Edwin Lisowski
编译 | CDA数据分析师
XGBoost and Random Forest with Bayesian Optimisation
在这篇文章中,我们将介绍带有贝叶斯优化算法的两种流行的算法即XGBoost和随机森林,并指出这些算法的优缺点。XGBoost(XGB)和随机森林(RF)都是集成学习方法,并通过组合各个决策树的输出(我们假设基于树的XGB或RF)来预测(分类或回归)。
让我们深入比较一下 - XGBoost与Random Forest
XGBoost或Gradient Boosting
XGBoost每次构建一个决策树,每一个新的树都修正以前训练过的决策树所产生的错误。
XGBoost应用程序的示例
在Addepto,我们使用XGBoost模型来解决异常检测问题,例如在监督学习方法中。在这种情况下,XGB非常有用,因为数据集通常非常不平衡。此类数据集的示例是移动应用中的用户/消费者交易,能量消耗或用户行为。
优点
由于通过优化目标函数导出了增强树,基本上XGB可以用来解决几乎所有可以写出渐变的目标函数。这包括排名和泊松回归等内容,RF难以实现。
缺点
如果数据有噪声,XGB模型对过度拟合更敏感。由于树木是按顺序建造的,因此培训通常需要更长时间。GBM比RF更难调整。通常有三个参数:树的数量,树的深度和学习率,并且构建的每个树通常是浅的。
随机森林(RF)使用随机数据样本独立训练每棵树。这种随机性有助于使模型比单个决策树更健壮。由于RF不太可能过度拟合训练数据。
随机森林应用示例
随机森林差异性已被用于各种应用,例如,基于组织标记数据找到患者群。在以下两种情况下,随机森林模型对于这种应用非常有吸引力:
我们的目标是为具有强相关特征的高维问题提供高预测精度。
我们的数据集非常嘈杂,并且包含许多缺失值,例如,某些属性是分类或半连续的。
优点
随机森林中的模型调整比XGBoost更容易。在RF中,我们有两个主要参数:每个节点要选择的特征数量和决策树的数量。RF比XGB更难装配。
缺点
随机森林算法的主要限制是大量的树可以使算法对实时预测变慢。对于包含具有不同级别数的分类变量的数据,随机森林偏向于具有更多级别的那些属性。
贝叶斯优化是一种优化功能的技术,其评估成本很高。它建立目标函数的后验分布,并使用高斯过程回归计算该分布中的不确定性,然后使用获取函数来决定采样的位置。贝叶斯优化专注于解决问题:
max f(x)(x∈A)
超参数的尺寸(x∈Rd)经常在最成功的应用d <20。
通常设置甲IA超矩形(x∈R d:ai ≤ xi ≤ bi)。目标函数是连续的,这是使用高斯过程回归建模所需的。它也缺乏像凹面或线性这样的特殊结构,这使得利用这种结构来提高效率的技术徒劳无功。贝叶斯优化由两个主要组成部分组成:用于对目标函数建模的贝叶斯统计模型和用于决定下一步采样的采集函数。
据初始空间填充实验设计评估目标后,它们被迭代地用于分配N个评估的预算的剩余部分,如下所示:
我们可以说贝叶斯优化是为黑盒无导数全局优化而设计来总结这个问题。它在机器学习中调整超参数非常受欢迎。
下面是整个优化的图形摘要:具有后验分布的高斯过程、观察和置信区间以及效用函数,其中最大值表示下一个样本点。
由于效用函数,贝叶斯优化在调整机器学习算法的参数方面比网格或随机搜索技术更有效。它可以有效地平衡“探索”和“利用”,找到全局最优。
为了呈现贝叶斯优化,我们使用用Python编写的BayesianOptimization库来调整随机森林和XGBoost分类算法的超参数。我们需要通过pip安装它:
pip install bayesian-optimization
现在让我们训练我们的模型。首先我们导入所需的库:
#Import libraries
import pandas as pd
import numpy as np
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
我们定义了一个函数来运行贝叶斯优化给定数据,优化函数及其超参数:
#Bayesian optimization
def bayesian_optimization(dataset, function, parameters):
X_train, y_train, X_test, y_test = dataset
n_iterations = 5
gp_params = {"alpha": 1e-4}
BO = BayesianOptimization(function, parameters)
BO.maximize(n_iter=n_iterations, **gp_params)
return BO.max
我们定义了优化函数,即随机森林分类器及其超参数nestimators,maxdepth和minsamplessplit。另外,我们使用给定数据集上的交叉验证分数的平均值:
def rfc_optimization(cv_splits):
def function(n_estimators, max_depth, min_samples_split):
return cross_val_score(
RandomForestClassifier(
n_estimators=int(max(n_estimators,0)),
max_depth=int(max(max_depth,1)),
min_samples_split=int(max(min_samples_split,2)),
n_jobs=-1,
random_state=42,
class_weight="balanced"),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
n_jobs=-1).mean()
parameters = {"n_estimators": (10, 1000),
"max_depth": (1, 150),
"min_samples_split": (2, 10)}
return function, parameters
类似地,我们为XGBoost分类器定义函数和超参数:
def xgb_optimization(cv_splits, eval_set):
def function(eta, gamma, max_depth):
return cross_val_score(
xgb.XGBClassifier(
objective="binary:logistic",
learning_rate=max(eta, 0),
gamma=max(gamma, 0),
max_depth=int(max_depth),
seed=42,
nthread=-1,
scale_pos_weight = len(y_train[y_train == 0])/
len(y_train[y_train == 1])),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
fit_params={
"early_stopping_rounds": 10,
"eval_metric": "auc",
"eval_set": eval_set},
n_jobs=-1).mean()
parameters = {"eta": (0.001, 0.4),
"gamma": (0, 20),
"max_depth": (1, 2000)}
return function, parameters
现在基于选择的分类器,我们可以优化它并训练模型:
#Train model
def train(X_train, y_train, X_test, y_test, function, parameters):
dataset = (X_train, y_train, X_test, y_test)
cv_splits = 4
best_solution = bayesian_optimization(dataset, function, parameters)
params = best_solution["params"]
model = RandomForestClassifier(
n_estimators=int(max(params["n_estimators"], 0)),
max_depth=int(max(params["max_depth"], 1)),
min_samples_split=int(max(params["min_samples_split"], 2)),
n_jobs=-1,
random_state=42,
class_weight="balanced")
model.fit(X_train, y_train)
return model
我们使用AdventureWorksDW2017 SQL Server数据库的视图[dbo].[vTargetMail]作为示例数据,我们可以依据个人数据预测人们是否购买自行车。作为贝叶斯优化的结果,我们提取出了连续样本:
我们可以看到贝叶斯优化在第23步中找到了最佳参数,在测试数据集上得出0.8622 AUC分数。如果要检查更多样品,这个结果可能会更高。我们优化的随机森林模型具有以下ROC AUC曲线:
我们提出了一种使用贝叶斯优化在机器学习中调整超参数的简单方法,贝叶斯优化是一种更快的方法,可以找到最优值,而且比网格或随机搜索方法更先进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05