作者 | Edwin Lisowski
编译 | CDA数据分析师
XGBoost and Random Forest with Bayesian Optimisation
在这篇文章中,我们将介绍带有贝叶斯优化算法的两种流行的算法即XGBoost和随机森林,并指出这些算法的优缺点。XGBoost(XGB)和随机森林(RF)都是集成学习方法,并通过组合各个决策树的输出(我们假设基于树的XGB或RF)来预测(分类或回归)。
让我们深入比较一下 - XGBoost与Random Forest
XGBoost或Gradient Boosting
XGBoost每次构建一个决策树,每一个新的树都修正以前训练过的决策树所产生的错误。
XGBoost应用程序的示例
在Addepto,我们使用XGBoost模型来解决异常检测问题,例如在监督学习方法中。在这种情况下,XGB非常有用,因为数据集通常非常不平衡。此类数据集的示例是移动应用中的用户/消费者交易,能量消耗或用户行为。
优点
由于通过优化目标函数导出了增强树,基本上XGB可以用来解决几乎所有可以写出渐变的目标函数。这包括排名和泊松回归等内容,RF难以实现。
缺点
如果数据有噪声,XGB模型对过度拟合更敏感。由于树木是按顺序建造的,因此培训通常需要更长时间。GBM比RF更难调整。通常有三个参数:树的数量,树的深度和学习率,并且构建的每个树通常是浅的。
随机森林(RF)使用随机数据样本独立训练每棵树。这种随机性有助于使模型比单个决策树更健壮。由于RF不太可能过度拟合训练数据。
随机森林应用示例
随机森林差异性已被用于各种应用,例如,基于组织标记数据找到患者群。在以下两种情况下,随机森林模型对于这种应用非常有吸引力:
我们的目标是为具有强相关特征的高维问题提供高预测精度。
我们的数据集非常嘈杂,并且包含许多缺失值,例如,某些属性是分类或半连续的。
优点
随机森林中的模型调整比XGBoost更容易。在RF中,我们有两个主要参数:每个节点要选择的特征数量和决策树的数量。RF比XGB更难装配。
缺点
随机森林算法的主要限制是大量的树可以使算法对实时预测变慢。对于包含具有不同级别数的分类变量的数据,随机森林偏向于具有更多级别的那些属性。
贝叶斯优化是一种优化功能的技术,其评估成本很高。它建立目标函数的后验分布,并使用高斯过程回归计算该分布中的不确定性,然后使用获取函数来决定采样的位置。贝叶斯优化专注于解决问题:
max f(x)(x∈A)
超参数的尺寸(x∈Rd)经常在最成功的应用d <20。
通常设置甲IA超矩形(x∈R d:ai ≤ xi ≤ bi)。目标函数是连续的,这是使用高斯过程回归建模所需的。它也缺乏像凹面或线性这样的特殊结构,这使得利用这种结构来提高效率的技术徒劳无功。贝叶斯优化由两个主要组成部分组成:用于对目标函数建模的贝叶斯统计模型和用于决定下一步采样的采集函数。
据初始空间填充实验设计评估目标后,它们被迭代地用于分配N个评估的预算的剩余部分,如下所示:
我们可以说贝叶斯优化是为黑盒无导数全局优化而设计来总结这个问题。它在机器学习中调整超参数非常受欢迎。
下面是整个优化的图形摘要:具有后验分布的高斯过程、观察和置信区间以及效用函数,其中最大值表示下一个样本点。
由于效用函数,贝叶斯优化在调整机器学习算法的参数方面比网格或随机搜索技术更有效。它可以有效地平衡“探索”和“利用”,找到全局最优。
为了呈现贝叶斯优化,我们使用用Python编写的BayesianOptimization库来调整随机森林和XGBoost分类算法的超参数。我们需要通过pip安装它:
pip install bayesian-optimization
现在让我们训练我们的模型。首先我们导入所需的库:
#Import libraries
import pandas as pd
import numpy as np
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
我们定义了一个函数来运行贝叶斯优化给定数据,优化函数及其超参数:
#Bayesian optimization
def bayesian_optimization(dataset, function, parameters):
X_train, y_train, X_test, y_test = dataset
n_iterations = 5
gp_params = {"alpha": 1e-4}
BO = BayesianOptimization(function, parameters)
BO.maximize(n_iter=n_iterations, **gp_params)
return BO.max
我们定义了优化函数,即随机森林分类器及其超参数nestimators,maxdepth和minsamplessplit。另外,我们使用给定数据集上的交叉验证分数的平均值:
def rfc_optimization(cv_splits):
def function(n_estimators, max_depth, min_samples_split):
return cross_val_score(
RandomForestClassifier(
n_estimators=int(max(n_estimators,0)),
max_depth=int(max(max_depth,1)),
min_samples_split=int(max(min_samples_split,2)),
n_jobs=-1,
random_state=42,
class_weight="balanced"),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
n_jobs=-1).mean()
parameters = {"n_estimators": (10, 1000),
"max_depth": (1, 150),
"min_samples_split": (2, 10)}
return function, parameters
类似地,我们为XGBoost分类器定义函数和超参数:
def xgb_optimization(cv_splits, eval_set):
def function(eta, gamma, max_depth):
return cross_val_score(
xgb.XGBClassifier(
objective="binary:logistic",
learning_rate=max(eta, 0),
gamma=max(gamma, 0),
max_depth=int(max_depth),
seed=42,
nthread=-1,
scale_pos_weight = len(y_train[y_train == 0])/
len(y_train[y_train == 1])),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
fit_params={
"early_stopping_rounds": 10,
"eval_metric": "auc",
"eval_set": eval_set},
n_jobs=-1).mean()
parameters = {"eta": (0.001, 0.4),
"gamma": (0, 20),
"max_depth": (1, 2000)}
return function, parameters
现在基于选择的分类器,我们可以优化它并训练模型:
#Train model
def train(X_train, y_train, X_test, y_test, function, parameters):
dataset = (X_train, y_train, X_test, y_test)
cv_splits = 4
best_solution = bayesian_optimization(dataset, function, parameters)
params = best_solution["params"]
model = RandomForestClassifier(
n_estimators=int(max(params["n_estimators"], 0)),
max_depth=int(max(params["max_depth"], 1)),
min_samples_split=int(max(params["min_samples_split"], 2)),
n_jobs=-1,
random_state=42,
class_weight="balanced")
model.fit(X_train, y_train)
return model
我们使用AdventureWorksDW2017 SQL Server数据库的视图[dbo].[vTargetMail]作为示例数据,我们可以依据个人数据预测人们是否购买自行车。作为贝叶斯优化的结果,我们提取出了连续样本:
我们可以看到贝叶斯优化在第23步中找到了最佳参数,在测试数据集上得出0.8622 AUC分数。如果要检查更多样品,这个结果可能会更高。我们优化的随机森林模型具有以下ROC AUC曲线:
我们提出了一种使用贝叶斯优化在机器学习中调整超参数的简单方法,贝叶斯优化是一种更快的方法,可以找到最优值,而且比网格或随机搜索方法更先进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25