作者 | Julia Kho
编译 | CDA数据分析师
Annotated Heatmaps of a Correlation Matrix in 5 Simple Steps
热图是数据的图形表示,也就是说,它使用颜色来向读者传达价值。当您拥有大量数据时,这是一个很好的工具,可以帮助观众了解最重要的区域。
在本文中,我将指导您通过5个简单步骤创建自己的相关矩阵注释热图。
1)导入数据
df = pd.read_csv("Highway1.csv",index_col = 0)
该公路事故数据集包含汽车事故率,每百万车辆英里的事故以及若干设计变量。
2)创建相关矩阵
corr_matrix = df.corr()
我们使用的是.corr 创建相关矩阵 。请注意,此矩阵中不存在htype列,因为它不是数字。我们需要使用htype来计算相关性。
df_dummy = pd.get_dummies(df.htype)
df = pd.concat([df,df_dummy],axis = 1)
另外,请注意,相关矩阵的上三角部分与下三角对称。因此,我们的热图不需要显示整个矩阵。我们将在下一步隐藏上三角形。
3)设置mask隐藏上三角
mask = np.zeros_like(corr_matrix,dtype = np.bool)
mask[np.triu_indices_from(mask)] =True
让我们打破上面的代码吧。 np.zeros_like() 返回一个零数组,其形状和类型与给定的数组相同。通过传递相关矩阵,我们得到如下的零数组。
该 dtype=np.bool 参数会覆盖数据类型,因此我们的数组是一个布尔数组。
np.triu_indices_from(mask) 返回数组上三角形的索引。
现在,我们将上三角形设置为True。 mask[np.triu_indices_from(mask)]= True
现在,我们有一个掩码可以用来生成热图。
4)在Seaborn中创建热图
f,ax = plt.subplots(figsize =(11,15))
heatmap=sns.heatmap(corr_matrix,
mask = mask,
square = True,
linewidths = .5,
cmap ='coolwarm',
cbar_kws = {'shrink':.4,
'ticks':[-1,-.5,0,0.5,1]},
vmin = -1,
vmax = 1,
annot = True,
annot_kws = {"size":12})
#增加列名做为标签
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
ax.set_xticklabels(corr_matrix.columns)
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
为了创建我们的热图,我们传递步骤3中的相关矩阵和我们在步骤4中创建的蒙版以及自定义参数,以使我们的热图看起来更好。如果您有兴趣了解每条线的作用,请参考以下参数说明。
#使每个单元格成方形
square = True,
#设置将每个单元格划分为.5的行的宽度
linewidths = .5,
#Map数据值到coolwarm颜色空间
cmap ='coolwarm',
#Shrink在[-1,-.5,0,0.5,1]处的图例大小和标签刻度线
cbar_kws = {'shrink':.4,'ticks':[-1,-.5,0,0.5,1]},
#设置颜色条的最小值
vmin = -1,
#设置颜色条的最大值
vmax = 1,
#转到相关值的注释
annot = True,
#将注释设置为12
annot_kws = {"size":12}
#将列名添加到x标签
ax.set_xticklabels(corr_matrix.columns)
#将列名添加到y标签并将文本旋转到0度
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
#在热图的底部和左侧显示标记
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
5)导出热图 现在你有热图,让我们把它导出。
heatmap.get_figure().savefig('heatmap.png', bbox_inches='tight')
如果您发现有一个非常大的热图不能正确导出,请使用bbox_inches = 'tight' 以防止图像被切断。
数据分析咨询请扫描二维码
数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22