作者 | Julia Kho
编译 | CDA数据分析师
Annotated Heatmaps of a Correlation Matrix in 5 Simple Steps
热图是数据的图形表示,也就是说,它使用颜色来向读者传达价值。当您拥有大量数据时,这是一个很好的工具,可以帮助观众了解最重要的区域。
在本文中,我将指导您通过5个简单步骤创建自己的相关矩阵注释热图。
1)导入数据
df = pd.read_csv("Highway1.csv",index_col = 0)
该公路事故数据集包含汽车事故率,每百万车辆英里的事故以及若干设计变量。
2)创建相关矩阵
corr_matrix = df.corr()
我们使用的是.corr 创建相关矩阵 。请注意,此矩阵中不存在htype列,因为它不是数字。我们需要使用htype来计算相关性。
df_dummy = pd.get_dummies(df.htype)
df = pd.concat([df,df_dummy],axis = 1)
另外,请注意,相关矩阵的上三角部分与下三角对称。因此,我们的热图不需要显示整个矩阵。我们将在下一步隐藏上三角形。
3)设置mask隐藏上三角
mask = np.zeros_like(corr_matrix,dtype = np.bool)
mask[np.triu_indices_from(mask)] =True
让我们打破上面的代码吧。 np.zeros_like() 返回一个零数组,其形状和类型与给定的数组相同。通过传递相关矩阵,我们得到如下的零数组。
该 dtype=np.bool 参数会覆盖数据类型,因此我们的数组是一个布尔数组。
np.triu_indices_from(mask) 返回数组上三角形的索引。
现在,我们将上三角形设置为True。 mask[np.triu_indices_from(mask)]= True
现在,我们有一个掩码可以用来生成热图。
4)在Seaborn中创建热图
f,ax = plt.subplots(figsize =(11,15))
heatmap=sns.heatmap(corr_matrix,
mask = mask,
square = True,
linewidths = .5,
cmap ='coolwarm',
cbar_kws = {'shrink':.4,
'ticks':[-1,-.5,0,0.5,1]},
vmin = -1,
vmax = 1,
annot = True,
annot_kws = {"size":12})
#增加列名做为标签
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
ax.set_xticklabels(corr_matrix.columns)
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
为了创建我们的热图,我们传递步骤3中的相关矩阵和我们在步骤4中创建的蒙版以及自定义参数,以使我们的热图看起来更好。如果您有兴趣了解每条线的作用,请参考以下参数说明。
#使每个单元格成方形
square = True,
#设置将每个单元格划分为.5的行的宽度
linewidths = .5,
#Map数据值到coolwarm颜色空间
cmap ='coolwarm',
#Shrink在[-1,-.5,0,0.5,1]处的图例大小和标签刻度线
cbar_kws = {'shrink':.4,'ticks':[-1,-.5,0,0.5,1]},
#设置颜色条的最小值
vmin = -1,
#设置颜色条的最大值
vmax = 1,
#转到相关值的注释
annot = True,
#将注释设置为12
annot_kws = {"size":12}
#将列名添加到x标签
ax.set_xticklabels(corr_matrix.columns)
#将列名添加到y标签并将文本旋转到0度
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
#在热图的底部和左侧显示标记
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
5)导出热图 现在你有热图,让我们把它导出。
heatmap.get_figure().savefig('heatmap.png', bbox_inches='tight')
如果您发现有一个非常大的热图不能正确导出,请使用bbox_inches = 'tight' 以防止图像被切断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29