京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Julia Kho
编译 | CDA数据分析师
Annotated Heatmaps of a Correlation Matrix in 5 Simple Steps
热图是数据的图形表示,也就是说,它使用颜色来向读者传达价值。当您拥有大量数据时,这是一个很好的工具,可以帮助观众了解最重要的区域。
在本文中,我将指导您通过5个简单步骤创建自己的相关矩阵注释热图。
1)导入数据
df = pd.read_csv("Highway1.csv",index_col = 0)
该公路事故数据集包含汽车事故率,每百万车辆英里的事故以及若干设计变量。
2)创建相关矩阵
corr_matrix = df.corr()
我们使用的是.corr 创建相关矩阵 。请注意,此矩阵中不存在htype列,因为它不是数字。我们需要使用htype来计算相关性。
df_dummy = pd.get_dummies(df.htype)
df = pd.concat([df,df_dummy],axis = 1)
另外,请注意,相关矩阵的上三角部分与下三角对称。因此,我们的热图不需要显示整个矩阵。我们将在下一步隐藏上三角形。
3)设置mask隐藏上三角
mask = np.zeros_like(corr_matrix,dtype = np.bool)
mask[np.triu_indices_from(mask)] =True
让我们打破上面的代码吧。 np.zeros_like() 返回一个零数组,其形状和类型与给定的数组相同。通过传递相关矩阵,我们得到如下的零数组。
该 dtype=np.bool 参数会覆盖数据类型,因此我们的数组是一个布尔数组。
np.triu_indices_from(mask) 返回数组上三角形的索引。
现在,我们将上三角形设置为True。 mask[np.triu_indices_from(mask)]= True
现在,我们有一个掩码可以用来生成热图。
4)在Seaborn中创建热图
f,ax = plt.subplots(figsize =(11,15))
heatmap=sns.heatmap(corr_matrix,
mask = mask,
square = True,
linewidths = .5,
cmap ='coolwarm',
cbar_kws = {'shrink':.4,
'ticks':[-1,-.5,0,0.5,1]},
vmin = -1,
vmax = 1,
annot = True,
annot_kws = {"size":12})
#增加列名做为标签
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
ax.set_xticklabels(corr_matrix.columns)
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
为了创建我们的热图,我们传递步骤3中的相关矩阵和我们在步骤4中创建的蒙版以及自定义参数,以使我们的热图看起来更好。如果您有兴趣了解每条线的作用,请参考以下参数说明。
#使每个单元格成方形
square = True,
#设置将每个单元格划分为.5的行的宽度
linewidths = .5,
#Map数据值到coolwarm颜色空间
cmap ='coolwarm',
#Shrink在[-1,-.5,0,0.5,1]处的图例大小和标签刻度线
cbar_kws = {'shrink':.4,'ticks':[-1,-.5,0,0.5,1]},
#设置颜色条的最小值
vmin = -1,
#设置颜色条的最大值
vmax = 1,
#转到相关值的注释
annot = True,
#将注释设置为12
annot_kws = {"size":12}
#将列名添加到x标签
ax.set_xticklabels(corr_matrix.columns)
#将列名添加到y标签并将文本旋转到0度
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
#在热图的底部和左侧显示标记
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
5)导出热图 现在你有热图,让我们把它导出。
heatmap.get_figure().savefig('heatmap.png', bbox_inches='tight')
如果您发现有一个非常大的热图不能正确导出,请使用bbox_inches = 'tight' 以防止图像被切断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24