
作者 | Julia Kho
编译 | CDA数据分析师
Annotated Heatmaps of a Correlation Matrix in 5 Simple Steps
热图是数据的图形表示,也就是说,它使用颜色来向读者传达价值。当您拥有大量数据时,这是一个很好的工具,可以帮助观众了解最重要的区域。
在本文中,我将指导您通过5个简单步骤创建自己的相关矩阵注释热图。
1)导入数据
df = pd.read_csv("Highway1.csv",index_col = 0)
该公路事故数据集包含汽车事故率,每百万车辆英里的事故以及若干设计变量。
2)创建相关矩阵
corr_matrix = df.corr()
我们使用的是.corr 创建相关矩阵 。请注意,此矩阵中不存在htype列,因为它不是数字。我们需要使用htype来计算相关性。
df_dummy = pd.get_dummies(df.htype)
df = pd.concat([df,df_dummy],axis = 1)
另外,请注意,相关矩阵的上三角部分与下三角对称。因此,我们的热图不需要显示整个矩阵。我们将在下一步隐藏上三角形。
3)设置mask隐藏上三角
mask = np.zeros_like(corr_matrix,dtype = np.bool)
mask[np.triu_indices_from(mask)] =True
让我们打破上面的代码吧。 np.zeros_like() 返回一个零数组,其形状和类型与给定的数组相同。通过传递相关矩阵,我们得到如下的零数组。
该 dtype=np.bool 参数会覆盖数据类型,因此我们的数组是一个布尔数组。
np.triu_indices_from(mask) 返回数组上三角形的索引。
现在,我们将上三角形设置为True。 mask[np.triu_indices_from(mask)]= True
现在,我们有一个掩码可以用来生成热图。
4)在Seaborn中创建热图
f,ax = plt.subplots(figsize =(11,15))
heatmap=sns.heatmap(corr_matrix,
mask = mask,
square = True,
linewidths = .5,
cmap ='coolwarm',
cbar_kws = {'shrink':.4,
'ticks':[-1,-.5,0,0.5,1]},
vmin = -1,
vmax = 1,
annot = True,
annot_kws = {"size":12})
#增加列名做为标签
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
ax.set_xticklabels(corr_matrix.columns)
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
为了创建我们的热图,我们传递步骤3中的相关矩阵和我们在步骤4中创建的蒙版以及自定义参数,以使我们的热图看起来更好。如果您有兴趣了解每条线的作用,请参考以下参数说明。
#使每个单元格成方形
square = True,
#设置将每个单元格划分为.5的行的宽度
linewidths = .5,
#Map数据值到coolwarm颜色空间
cmap ='coolwarm',
#Shrink在[-1,-.5,0,0.5,1]处的图例大小和标签刻度线
cbar_kws = {'shrink':.4,'ticks':[-1,-.5,0,0.5,1]},
#设置颜色条的最小值
vmin = -1,
#设置颜色条的最大值
vmax = 1,
#转到相关值的注释
annot = True,
#将注释设置为12
annot_kws = {"size":12}
#将列名添加到x标签
ax.set_xticklabels(corr_matrix.columns)
#将列名添加到y标签并将文本旋转到0度
ax.set_yticklabels(corr_matrix.columns,rotation = 0)
#在热图的底部和左侧显示标记
sns.set_style({'xtick.bottom':True},{'ytick.left':True})
5)导出热图 现在你有热图,让我们把它导出。
heatmap.get_figure().savefig('heatmap.png', bbox_inches='tight')
如果您发现有一个非常大的热图不能正确导出,请使用bbox_inches = 'tight' 以防止图像被切断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02