作者 | AlfredWu
来源 | Alfred数据室
最近有很多人在问,我是如何收集网络的数据,如何进行数据处理、数据分析以及可视化呈现的。
也有人问的更具体,关于Python数据分析的一些问题。到底应该怎么学?如何快速入门,以及技术和业务之间的瓶颈如何突破?
因为深度的数据分析往往可以看到事情的本质,而这又是一项在任何情况下都超级加分的技能。总结了一些经验,希望能够给还没入门、或者入门之后就遇到瓶颈的新手一些建议。主要是关于如何系统地进行学习规划,以及可以避免的一些坑。
有的同学看到数据分析几个字,就马上开始Python函数+控制语句、R语言和ggplot库……上来一顿骚操作,还没入门就放弃了。
这就是需求不明确导致的,当然学习方式也值得商榷,那到底数据分析需要什么样的技能呢?这里作为例子,从招聘网站上找了几个数据分析的岗位,我们来看看具体的要求是怎样的。
其实企业对数据分析师的基础技能需求差别不大,可总结如下:
看上去很简单呀,对吧,但其实你把每个技能拆分开来,都是一个不小的知识体系。如果我们按照数据分析的流程来细分的话,每个部分应该掌握的技能,大概是这样的:
那对于这个技能体系,应该如何进行技能的训练呢?先后顺序是什么?哪些地方可能出现困难和瓶颈?
按数据分析的流程的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。
接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。
- ❶ -
数据获取:爬虫与公开数据
数据是产生价值的原材料,这也是数据分析项目的第一步。
通常我是通过爬虫获取相关数据的,一来数据有很高的时效性,二来数据的来源可以得到保证,毕竟网上的信息是异常丰富的。
这些分布在网上零散的信息,通过爬取整合之后,就有比较高的分析价值。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某个事件、某类人群进行分析。
在爬虫之前需要先了解一些 Python 的基础知识:数据类型(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests等)实现网页爬虫。如果是初学,建议从requests+xpath开始。
当然,并不是说公开数据就没用了,在进行分析的时候,需要一些历史数据进行对比,需要一定的行业标准进行参考的时候,公开数据的价值就体现出来了。
一些科研机构、企业、政府会开放一些数据,还有一些行业研究报告、他人的调查结果,都可以成为你的数据来源。这些数据集通常比较完善、质量相对较高。
- ❷ -
数据存取:SQL语言
我并不是每次都会用到数据库,但很多时候这确实是做数据分析项目的必备技能,包括求职就业,也是必选项。
通常数据库的使用能够让数据存储、管理更方便,同时也能提高数据提取和使用的效率,特别是在数据上了一定的量级之后,谁用谁知道。
大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也至少要懂得SQL的操作,能够查询、提取公司的数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。需要掌握以下技能:
SQL这部分比较简单,主要是掌握一些基本的语句。当然,还是建议找几个数据集来实际操作一下,哪怕是最基础的查询、提取等。
- ❸ -
数据处理:Pandas/Numpy
爬回来的数据通常是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
那么我们需要用相应的方法去处理,比如重复数据,是保留还是删除;比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
对于数据预处理,学会 pandas/Numpy (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
数据清洗通常被视为脏活,但事实上这步非常重要,这直接决定了你的分析结论的准确性,决定你的项目是否能顺利进行下去。
- ❹ -
数据分析与可视化
这个是从数据中发现信息、挖掘价值的过程,大多数的结论在这个步骤产生,主要做两件事情。
一是对于既定的数据分析主题进行拆解,评估需要从哪些维度进行分析,提取哪些数据,这个步骤很大程度上来源于经验或者对于具体事务的理解;
二是通过探索数据分布的规律、数据的特征,发现从表面看不到的信息,完成这个流程主要是通过数据本身进行探索。
前者对应的是描述性的数据分析,主要考虑数据的指标,看从不同的角度去描述数据能够得出哪些结论。
这个地方就需要对统计学的相关知识有一定的了解,比如:
后者则是探索型的数据分析,主要通过绘制数据的分布图形,来观察数据的分布规律,从而提取隐藏的某些信息。
这里就需要对掌握可视化的技能,Python中的Matplotlib/Seaborn都可以完成可视化的工作。可视化既是探索性分析的工具,也可以输出最终结果呈现的图形。
当然,还有一种是预测型的数据分析,需要构建模型来预测未来数据,我在推文中用的比较少,但在企业中应用非常多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29