作者 | AlfredWu
来源 | Alfred数据室
最近有很多人在问,我是如何收集网络的数据,如何进行数据处理、数据分析以及可视化呈现的。
也有人问的更具体,关于Python数据分析的一些问题。到底应该怎么学?如何快速入门,以及技术和业务之间的瓶颈如何突破?
因为深度的数据分析往往可以看到事情的本质,而这又是一项在任何情况下都超级加分的技能。总结了一些经验,希望能够给还没入门、或者入门之后就遇到瓶颈的新手一些建议。主要是关于如何系统地进行学习规划,以及可以避免的一些坑。
有的同学看到数据分析几个字,就马上开始Python函数+控制语句、R语言和ggplot库……上来一顿骚操作,还没入门就放弃了。
这就是需求不明确导致的,当然学习方式也值得商榷,那到底数据分析需要什么样的技能呢?这里作为例子,从招聘网站上找了几个数据分析的岗位,我们来看看具体的要求是怎样的。
其实企业对数据分析师的基础技能需求差别不大,可总结如下:
看上去很简单呀,对吧,但其实你把每个技能拆分开来,都是一个不小的知识体系。如果我们按照数据分析的流程来细分的话,每个部分应该掌握的技能,大概是这样的:
那对于这个技能体系,应该如何进行技能的训练呢?先后顺序是什么?哪些地方可能出现困难和瓶颈?
按数据分析的流程的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。
接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。
- ❶ -
数据获取:爬虫与公开数据
数据是产生价值的原材料,这也是数据分析项目的第一步。
通常我是通过爬虫获取相关数据的,一来数据有很高的时效性,二来数据的来源可以得到保证,毕竟网上的信息是异常丰富的。
这些分布在网上零散的信息,通过爬取整合之后,就有比较高的分析价值。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某个事件、某类人群进行分析。
在爬虫之前需要先了解一些 Python 的基础知识:数据类型(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests等)实现网页爬虫。如果是初学,建议从requests+xpath开始。
当然,并不是说公开数据就没用了,在进行分析的时候,需要一些历史数据进行对比,需要一定的行业标准进行参考的时候,公开数据的价值就体现出来了。
一些科研机构、企业、政府会开放一些数据,还有一些行业研究报告、他人的调查结果,都可以成为你的数据来源。这些数据集通常比较完善、质量相对较高。
- ❷ -
数据存取:SQL语言
我并不是每次都会用到数据库,但很多时候这确实是做数据分析项目的必备技能,包括求职就业,也是必选项。
通常数据库的使用能够让数据存储、管理更方便,同时也能提高数据提取和使用的效率,特别是在数据上了一定的量级之后,谁用谁知道。
大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也至少要懂得SQL的操作,能够查询、提取公司的数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。需要掌握以下技能:
SQL这部分比较简单,主要是掌握一些基本的语句。当然,还是建议找几个数据集来实际操作一下,哪怕是最基础的查询、提取等。
- ❸ -
数据处理:Pandas/Numpy
爬回来的数据通常是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
那么我们需要用相应的方法去处理,比如重复数据,是保留还是删除;比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
对于数据预处理,学会 pandas/Numpy (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
数据清洗通常被视为脏活,但事实上这步非常重要,这直接决定了你的分析结论的准确性,决定你的项目是否能顺利进行下去。
- ❹ -
数据分析与可视化
这个是从数据中发现信息、挖掘价值的过程,大多数的结论在这个步骤产生,主要做两件事情。
一是对于既定的数据分析主题进行拆解,评估需要从哪些维度进行分析,提取哪些数据,这个步骤很大程度上来源于经验或者对于具体事务的理解;
二是通过探索数据分布的规律、数据的特征,发现从表面看不到的信息,完成这个流程主要是通过数据本身进行探索。
前者对应的是描述性的数据分析,主要考虑数据的指标,看从不同的角度去描述数据能够得出哪些结论。
这个地方就需要对统计学的相关知识有一定的了解,比如:
后者则是探索型的数据分析,主要通过绘制数据的分布图形,来观察数据的分布规律,从而提取隐藏的某些信息。
这里就需要对掌握可视化的技能,Python中的Matplotlib/Seaborn都可以完成可视化的工作。可视化既是探索性分析的工具,也可以输出最终结果呈现的图形。
当然,还有一种是预测型的数据分析,需要构建模型来预测未来数据,我在推文中用的比较少,但在企业中应用非常多。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16