作者 | 吹牛Z
来源 | 数据不吹牛
据某数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感。
初识Pandas最基础的列向索引在这里就不多加介绍了,今天我们给大家介绍的是,结合场景详细介绍两种常用的索引方式:
首先,简单介绍一下练习的案例数据:
和第一篇数据集一样,记录着不同流量来源下,各渠道来源明细所对应的访客数、支付转化率和客单价。数据集虽然简短(复杂的案例数据集在基础篇完结后会如约而至),但是有足够的代表性,下面开始我们索引的表演。
01 基于位置(数字)的索引
先看一下索引的操作方式:
我们需要根据实际情况,填入对应的行参数和列参数。
场景一(行选取)
目标:选择“流量来源”等于“一级”的所有行。
思路:手指戳屏幕数一数,一级的渠道,是从第1行到第13行,对应行索引是0-12,但Python切片默认是含首不含尾的,要想选取0-12的索引行,我们得输入“0:13”,列想要全部选取,则输入冒号“:”即可。
场景二(列选取)
目标:我们想要把所有渠道的流量来源和客单价单拎出来看一看。
思路:所有流量渠道,也就是所有行,在第一个行参数的位置我们输入“:”;再看列,流量来源是第1列,客单价是第5列,对应的列索引分别是0和4:
值得注意的是,如果我们要跨列选取,得先把位置参数构造成列表形式,这里就是[0,4],如果是连续选取,则无需构造成列表,直接输入0:5(选取索引为0的列到索引为4的列)就好。
场景三(行列交叉选取)
目标:我们想要看一看二级、三级流量来源、来源明细对应的访客和支付转化率
思路:先看行,二级三级渠道对应行索引是13:17,再次强调索引含首不含尾的原则,我们传入的行参数是13:18;列的话我们需要流量来源、来源明细、访客和转化,也就是前4列,传入参数0:4。
02 基于名称(标签)的索引
为了建立起横向对比的体感,我们依然沿用上面三个场景。
场景一:选择一级渠道的所有行。
思路:这次我们不用一个个数位置了,要筛选流量渠道为"一级"的所有行,只需做一个判断,判断流量来源这一列,哪些值等于"一级"。
返回的结果由True和False(布尔型)构成,在这个例子中分别代表结果等于一级和非一级。在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子:
场景二:我们想要把所有渠道的流量来源和客单价单拎出来看一看。
思路:所有渠道等于所有行,我们在行参数位置直接输入“:”,要提取流量来源和客单价列,直接输入名称到列参数位置,由于这里涉及到两列,所以得用列表包起来:
场景三:我们想要提取二级、三级流量来源、来源明细对应的访客和支付转化率。
思路:行提取用判断,列提取输入具体名称参数。
此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。拿案例来说,df['流量来源'].isin(['二级','三级']),判断的是流量来源这一列的值,是否等于“二级”或者“三级”,如果等于(等于任意一个)就返回True,否则返回False。我们再把这个布尔型判断结果传入行参数,就能够很容易的得到流量来源等于二级或者三级的渠道。
既然loc的应用场景更加广泛,应该给他加个鸡腿,再来个接地气的场景练练手。
插入场景之前,我们先花30秒的时间捋一捋Pandas中列(Series)向求值的用法,具体操作如下:
只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。
场景四:对于流量渠道数据,我们真正应该关注的是优质渠道,假如这里我们定义访客数、转化率、客单价都高于平均值渠道是优质渠道,那怎么找到这些渠道呢?
思路:优质渠道,得同时满足访客、转化、客单高于平均值这三个条件,这是解题的关键。
先看看均值各是多少:
再判断各指标列是否大于均值:
要三个条件同时满足,他们之间是一个“且”的关系(同时满足),在pandas中,要表示同时满足,各条件之间要用"&"符号连接,条件内部最好用括号区分;如果是“或”的关系(满足一个即可),则用“|”符号连接:
这样连接之后,返回True则表示该渠道同时满足访客、转化率、客单价都高于均值的条件,接下来我们只需要把这些值传入到行参数的位置。
到这一步,我们直接筛选出了4条关键指标都高于均值的优质渠道。
这两种索引方式,分别是基于位置(数字)的索引和基于名称(标签)的索引,关键在于把脑海中想要选取的行和列,映射到对应的行参数与列参数中去。
只要稍加练习,我们就能够随心所欲的用pandas处理和分析数据,迈过了这一步之后,你会发现和Excel相比,Python是如此的美艳动人。
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13