作者 | 磐怼怼
来源 | 磐创AI
数据科学家是“在统计方面比任何软件工程师都要出色,在软件工程方面比任何统计学家都出色的人”。许多数据科学家都有统计学背景,但很少有软件工程经验。我是一位高级数据科学家,在Python编码的Stackoverflow上排名第一,并与许多(初级)数据科学家合作。下面是我经常看到的10个常见错误。
1. 不共享代码中引用的数据
数据科学需要代码和数据。因此,要使其他人能够重现您的结果,他们需要有权访问数据。虽然看起来很基础,但是很多人忘记了共享代码的数据。
import pandas as pd
df1 = pd.read_csv('file-i-dont-have.csv') # 错误
do_stuff(df)
解决方案:使用d6tpipe共享数据文件,或上传到S3 / web / google等或保存到数据库,以他人可以检索文件(但不要将它们添加到git,详见下文)。
2. 硬编码无法访问的路径
与错误1相似,如果您对其他人无法访问的路径进行硬编码,则他们将无法运行您的代码,因此要查看很多地方手动更改路径。
import pandas as pd
df = pd.read_csv('/path/i-dont/have/data.csv') # 错误
do_stuff(df)
# or
impor os
os.chdir('c:\\Users\\yourname\\desktop\\python') # 错误
解决方案:使用相对路径,配置全局路径变量或d6tpipe使数据易于访问。
3. 将数据与代码混合
由于数据科学代码需要数据,为什么不将其存储到同一目录?当您使用它时,也可以在其中保存图像,日志和其他垃圾文件。
├── data.csv ├── ingest.py ├── other-data.csv ├── output.png ├── report.html └── run.py
解决方案:将目录按照类别进行组织,例如数据,日志,代码等。
4. Git提交带有源代码的数据
现在大多数人都可以控制他们的代码版本(如果不使用,那是另一个错误!参见git)。为了共享数据,可能想将数据文件添加到版本控制中。如果是很小的文件还可以,但是git并没有对数据文件进行优化,尤其是大文件。
git add data.csv
解决方案:使用问题1中提到的工具来存储和共享数据。如果确实要对控制数据进行版本控制,请参阅d6tpipe,DVC和Git大文件存储。
5. 编写函数而不是DAG
有足够的数据,接下来谈谈实际的代码!由于在学习代码时首先要学习的内容之一就是函数,因此数据科学代码通常被组织为一系列线性运行的函数。这可能会导致几个问题。
def process_data(data, parameter): data = do_stuff(data) data.to_pickle('data.pkl') data = pd.read_csv('data.csv') process_data(data) df_train = pd.read_pickle(df_train) model = sklearn.svm.SVC() model.fit(df_train.iloc[:,:-1], df_train['y'])
解决方案:最好将数据科学代码编写为一组任务,并且它们之间具有依赖性,而不是线性链接函数。使用d6tflow或airflow。
6. 循环
和函数一样,for循环是在学习编码时首先要学习的东西。它们易于理解,但它们速度慢且过于冗长,通常表示您不知道有向量化的替代方案。
x = range(10) avg = sum(x)/len(x); std = math.sqrt(sum((i-avg)**2 for i in x)/len(x)); zscore = [(i-avg)/std for x] # should be: scipy.stats.zscore(x) # or groupavg = [] for i in df['g'].unique(): dfg = df[df[g']==i] groupavg.append(dfg['g'].mean()) # should be: df.groupby('g').mean()
解决方案:Numpy,scipy和pandas具有向量化功能,可用于大多数的循环。
7. 不编写单元测试
随着数据,参数或用户输入的更改,您的代码可能会中断,有时您可能不会注意到。这可能会导致错误的输出,如果有人根据您的输出做出决策,那么错误的数据将导致错误的决策!
解决方案:使用assert语句检查数据。pandas有相等测试,d6tstack有数据摄取和检查,d6tjoin数据连接。代码示例:
assert df['id'].unique().shape[0] == len(ids) # 数据是否有所有的id assert df.isna().sum()<0.9 # 检查缺失的数据 assert df.groupby(['g','date']).size().max() ==1 # 是否有重复的数据 assert d6tjoin.utils.PreJoin([df1,df2],['id','date']).is_all_matched() # 所有的id是否匹配
8. 不记录代码
我明白你着急进行一些分析。您可以一起努力取得成果给客户或老板。然后一个星期后,他们说“请您更新此内容”。您看着您的代码,不记得为什么要这么做。现在想象其他人需要运行它。
def some_complicated_function(data):
data = data[data['column']!='wrong']
data = data.groupby('date').apply(lambda x: complicated_stuff(x))
data = data[data['value']<0.9]
return data
解决方案:即使在完成分析之后,也要花点时间记录所做的工作。您将感谢自己,其他人更加感谢!
9. 将数据另存为csv或pickle
回到数据,毕竟是数据科学。就像函数和for循环一样,通常使用CSV和pickle文件,但它们实际上并不是很好。CSV不包含架构,因此每个人都必须再次解析数字和日期。pickle可以解决此问题,但只能在python中工作,并且不能压缩。两者都不是存储大型数据集的良好格式。
def process_data(data, parameter): data = do_stuff(data) data.to_pickle('data.pkl') data = pd.read_csv('data.csv') process_data(data) df_train = pd.read_pickle(df_train)
解决方案:使用parquet 或其他具有数据格式的二进制数据格式,最好是压缩数据的格式。d6tflow自动将任务的数据输出保存为parquet,不需要你进行处理。
10. 使用jupyter笔记本
让我们以一个有争议的结论来结束:jupyter notebooks 与CSV一样普遍。很多人使用它们,那并不是好事。Jupyter notebooks 促进了上述许多不良的软件工程习惯,尤其是:
入门很容易,但是扩展性很差。
解决方案:使用pycharm或spyder。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13