大数据推动管理的现代化转型_数据分析师
把大数据的手段和方法引入管理领域,是实现管理现代化的有效路径,也是大数据时代的必然要求。在广东省,伴随着经济的迅猛发展,地方税收纳税登记户从1994年60多万户增加到2011年的285多万户,地税收入从184亿元增加到4248亿元,而同期,地税系统干部人数仅增加了20%。海量数据的即时获取和精确分析成为摆在管理者面前的一道难题。广东省通过率先建设省级地税集中征管信息系统,使全省共用一套服务器、一套程序和一个网络。目前,广东省税收管理员系统的数据总量已达到53TB,承载了覆盖税收执法、税源管理、涉税提醒服务等100多项业务。下面以广东省地税系统为例,从6方面揭示大数据推动公共管理从传统向现代转型的趋势。
从粗放化管理向精细化管理转型。广东地税通过建立省级数据应用大集中平台,告别了靠手工操作和人海战术的粗放型管理模式,实现了税款自动入库、自动划解和实时监控,取得了税款的稳定快速增长。通过对海量数据的分析和比对,广东地税对每个行业、每家企业、每个税种实现了精细化分析和掌控。例如,房地产业和建筑安装业流动性大、中间环节复杂,难以监控,历来是征管难点。广东地税依托大数据平台,开发了建筑安装业和房地产行业税源控管系统。通过该系统,可实时获取房地产开发项目明细信息,包括土地使用权信息、建筑工程进度、房产销售进度、销售明细以及各阶段的税款缴纳情况等,实现了项目从产生到消亡的全过程监控。
从单兵作战型管理向协作共享型管理转型。过去,不同政府部门拥有自己的信息系统,但很多数据相互隔离,形成了一个个信息孤岛,大数据的一大应用就是要实现数据信息共享,最大限度地发挥数据的功效,为经济社会发展服务。广东地税借助大数据平台,积极推进第三方涉税信息共享,明确了28个部门共享涉税信息的内容和方式。目前,工商税务信息每天都进行实时交换,推动了地税机关在办证服务上的创新,从原来的限时办证发展到现在的即时办证,从原来填写100多项登记信息,升级到填写8项必要信息内容,甚至可以享受免填服务。
从柜台式管理向自助式全天候管理转型。广东地税根据纳税人类别、涉税业务类别、办理时段等信息,依托大数据平台,形成了服务大厅、网上办税、纳税热线、自助办税、短信服务等多种渠道并存的大服务格局。通过自助办税终端系统,纳税人可以不受区域和时间限制,自行完成代开小额发票、打印缴款凭证、清缴税费、申报缴纳车船税等凭证类税收业务。截至2012年10月,广东地税已在全省(深圳除外)向纳税人开放573台自助办税终端,24小时自助办税厅(点)63个,办理税收业务累计超过660万户次,日平均办理业务量超过1.3万户次,分担了办税服务大厅约14%的业务量。
从被动响应型管理向主动预见型管理转型。为更好地主动服务于纳税人,广东地税通过税收大数据平台,推出全省集中统一的短信服务,为673万纳税人提供短信订阅服务,有针对性地对目标群体提供了发票开具提醒、逾期未申报短信提醒、未到期未申报短信提醒等多项主动短信服务。借助于大数据平台,避免了轰炸式、无目的性的短信服务方式,实现了针对特定受众发送定制短信内容的精确式短信服务,提升了服务质量。经统计,2011年的短信服务量超过1800万条;2012年前10个月的短信服务量已超过5220万条。
从纸质文书管理向电子政务管理转型。目前,广东地税互联网电子税务局已基本建成,纳税人仅需短短5分钟,足不出户就能轻松办税。全省网报开户纳税人134.2万,开户率90.8%;电子报税的纳税户占纳税户总数的95%以上。广东省还在全国率先推行网络开具发票,不仅方便纳税人,还使税务机关能第一时间掌握每张发票的信息,实时与企业纳税申报数据比对分析,及时发现未缴、少缴税款的情况,保障了税款准确及时入库。网络发票的普及有效解决了假发票泛滥问题,大幅减少了用假发票报销的现象,被国家税务总局誉为“税收管理史上的颠覆性举措”。
从风险隐蔽型管理向风险防范型管理转型。广东地税坚持走科技防腐之路,开创了全国税务系统以信息化推进惩防体系建设的先河。依托大数据平台建立的惩防体系信息管理系统,对地税干部的税收执法和行政管理进行全程分析监控,有效防控了各类执法和廉政风险。对全省地税税收执法的监控预警数据从2008年刚上线时的每月近7000个,大幅回落到2012年的不到500个,下降了92%。国地税分设18年来,全系统违法违纪发案率基本控制在0.5‰以下的较低水平,没有发生重大违法违纪案件,省局机关未发生违法违纪案件。
精细化管理、协作共享型管理、自助式全天候管理、主动预见型管理、电子政务管理、风险防范型管理,这些关键词也许还无法完全概括出大数据赋予现代管理的种种前景,然而却有助于我们把握前进的方向。令人欣喜的是,由于现代管理具有信息化、标准化的特征,只要有一种好的模式被创造出来,就可以迅速在其他区域、其他部门予以复制和推广。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21