热线电话:13121318867

登录
首页精彩阅读智能化发展之路:AI和机器学习如何优化数据中心
智能化发展之路:AI和机器学习如何优化数据中心
2019-11-01
收藏
智能化发展之路:AI和<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>机器学习</a>如何优化数据中心

作者 | Peter Judge

编译 | CDA数据分析师

我们对人工智能(AI)理解和解决问题的能力几乎是神秘的信念。它被应用于我们日常生活的许多领域,因此,实现这一目标的硬件开始填充我们的数据中心。

数据中心本身就存在一系列复杂问题,包括优化和预测。那么,如何使用这种奇迹技术来改善我们的设施呢?

向内转动AI

智能化发展之路:AI和<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>机器学习</a>如何优化数据中心

机器学习,尤其是深度学习,可以检查大量数据,并在其中找到不依赖于人类用于理解和预测数据的模型的模式。它还可以预测将来会重复出现的模式。

数据中心已经配备齐全,传感器可提供大量有关IT性能和环境因素的实时和历史数据。2016年,谷歌在将AI应用于该数据时成为头条新闻,以提高效率。

谷歌使用其拥有的人工智能技术DeepMind来优化其数据中心的散热。2014年,该公司宣布数据中心工程师Jim Gao正在使用AI技术实施推荐引擎。

2016年,该项目利用一套神经网络优化了谷歌新加坡工厂的冷却,该网络学习如何预测未来的温度并提供主动响应的建议,

根据DeepMind的研究工程师Richard Evans的说法,该结果使该网站的冷却费减少了40%,而PUE(功率利用效率)减少了15%。2016年,他承诺:“由于算法是理解复杂动态的通用框架,因此我们计划将其应用于数据中心环境中的其他挑战。”

2018年宣布的下一步是向自动驾驶数据中心冷却系统靠拢,人工智能在人工监督下调整数据中心的运行设置。为了确保系统安全运行,团队限制了其运行,因此自动系统“仅”节省了30%的冷却费用。

智能化发展之路:AI和<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>机器学习</a>如何优化数据中心

AI补充

该系统每五分钟拍摄数千个传感器的数据中心冷却系统快照,并将其输入云中的AI系统。这预测了潜在行动将如何影响未来的能源消耗,并选择最佳选择。将其发送到数据中心,由本地控制系统验证,然后实施。

项目团队报告说,该系统已开始产生意外的优化。谷歌数据中心运营商Dan Fuenffinger曾与该系统一起广泛合作,他说:“看到AI学会利用冬季条件生产比普通水更冷的水,这令人惊讶,这降低了冷却所需的能量。数据中心。随着时间的推移,规则并没有变得更好,但AI确实如此。“

高智晟表示,这里的重大胜利证明了该系统安全有效地运作。决策受到安全规则的审查,人工操作员可以随时接管。 在这个阶段,谷歌的AI优化有一个客户:谷歌本身。但这个想法得到了学术界的强烈支持。

稳定很重要

人类和简单的基于规则的系统可以响应任何稳态情况,但是当环境发生变化时,它们会以“波涛汹涌”的方式作出反应 - 人工智能可以做得更好,因为它可以预测变化,根据DCD主题演讲演讲人Suvojit Ghosh,他是安大略省麦克马斯特大学计算基础设施研究中心(CIRC)的负责人。

“我们知道运行服务器太热了很糟糕。”Ghosh说。“但如果你有温度波动,情况显然会更糟。”简单的规则使数据中心迅速达到最佳稳态位置,但在此过程中,它们会使温度突然发生阶段性变化,结果发现这会浪费很多能源。如果条件经常变化,那么这些能量损失可以抵消收益。

“如果你的环境温度从70华氏度到80华氏度(21-27摄氏度),然后倒退,真的很疼,”戈什说。

数据中心服务公司正在做出回应。数据中心基础设施管理(DCIM)公司已经增加了智能,而那些已经在进行预测分析的公司已经增加了机器学习

智能化发展之路:AI和<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>机器学习</a>如何优化数据中心

“目前的机器学习方面处于平台的初始数据处理阶段,传感器和仪表的原始数据在被送入预测建模引擎之前被标准化,清理,验证和标记,”Zahl Limbuwala说,他是联合创始人。 Romonet,一家分析公司,现在由房地产公司CBRE拥有。

电力和冷却方面的智能行动有不同的名称。在中国,华为的电力,冷却和DCIM智能化的目标在于iPower,iCooling和iManager的代号。

与谷歌和其他公司一样,华为从简单的实际步骤开始,例如使用模式匹配来控制温度并发现制冷剂泄漏的证据。在电力系统中,它致力于使用AI识别和隔离故障。

根据高级营销经理邹晓腾的说法,在拥有1,540个机架的廊坊数据中心,华为大幅降低了使用iCooling的PUE。该设施的运行速度约为每机架6kW,IT负载率为43%。

DCIM供应商Nlyte在2018年签署了将其工具与世界上最知名的AI项目之一IBM的Watson集成后,将其颜色牢牢地固定在DCIM桅杆上。

Nlyte首席执行官Doug Sabella在当年在DCD>纽约启动合作伙伴关系时预测,人工智能增强DCIM将带来伟大的事情:“简单的事情就是预防性维护,”他告诉DCD。“但是,除了预测性事物之外,您还真正进入工作负载并管理工作负载。在应用程序性能管理方面考虑一下:今天,您可以根据有限的数据集选择要放置工作负载的位置。我把它放在公共云中还是私有云中?有助于确定位置和基础架构的属性是什么?

“有一整套关键信息未包含在该决定中,但从AI的角度来看,您可以为此做出贡献,以实际减少工作量并优化工作负载并降低工作负载失败的风险。我们看到并且我们的合作伙伴看到了一整套人工智能游戏,我们正在努力解决这个问题,这将产生重大影响。“

IBM Watson IoT的北美市场营销负责人Amy Benett看到了另一个实用的方面:“看哪,数据中心团队的新成员,一个永远不会从休息室度假或午餐的人。”

DCD了解合作伙伴关系仍在继续。Watson品牌在一些报道中表现得有些黯然失色,因为它没有像医疗保健等更苛刻的领域那样提供承诺。这个早期品牌领导者可能已被超卖,但如果是这样,数据中心可能成为恢复其良好声誉的舞台。数据中心的重要系统比人体简单得多。

智能化发展之路:AI和<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>机器学习</a>如何优化数据中心

Suvojit Ghosh博士- DCD

下一阶段

Ghosh说,现在是人工智能解决更大问题的时候了,这与Sabella的观点相呼应。在最初的打嗝之后,提高功率和冷却效率的努力最终将达到收益递减的程度。此时,AI可以开始自己移动IT负载:

“使用计算历史记录的成本进行智能负载平衡或容器编排,可以降低特定应用程序的能源成本,”Ghosh告诉他的DCD受众。这可能会节省一半的IT能源成本,“只需通过重新调整工作[使用AI] - 而且这并没有考虑到关闭空闲服务器或任何类似的疯狂事件。”

除此之外,Ghosh正在研究数据中心声音的AI分析。“有经验的人可以告诉你一些事情是错的,因为这听起来很有趣,”他说。中国保监会一直在创建数据中心的完整配置文件,并将其与功耗相关联。

华为也这样做:“如果变压器出现问题,噪声模式会发生变化,”邹晓腾说。“通过学习变压器的噪声模式,我们可以使用声学技术来监控变压器的状态。”

Ghosh说,这种方法允许人工智能超越专业的人类知识,并选择“人类认知永远无法理解的东西”。

“在接下来的10年里,我们将能够在失败发生前预测失败,”Ghosh说。“我的一个梦想是创建一种能够完全消除预防性维护需求的算法。”

他告诉DCD,华为的小腾也认为不太明显的好处是:人工智能可以将资源利用率提高20%左右,同时减少人为错误。 小腾看到人工智能从零级,一个完全手动的数据中心爬上梯子。“在第一级,基本功能是使用传感器可视化数据中心的内容,在第二级,我们有一些帮助,部分无人值守操作,”数据中心将向工程师报告条件,工程师将做出适当的响应。

智能化发展之路:AI和<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>机器学习</a>如何优化数据中心

他说,在第三级,数据中心开始提供自己的根本原因分析和虚拟帮助来解决问题。华为已经到了这个阶段,他说:“在未来,我相信我们可以使用AI来预测是否存在任何问题,并使用AI来自我恢复数据中心。”

他预测,在这个阶段,DCIM系统甚至可以从专用的AI处理器中受益。华为已经在尝试使用其Ascend系列AI处理器与云端和边缘的DCIM合作。

目前,与这些想法相比,大多数用户仍然处于早期阶段,但有些用户显然赞同这种乐观态度:“今天我们使用[AI]来监控设定点,”富国银行任务关键设施现场经理Eric Fussenegger表示,在2019年在DCD>纽约发表演讲,增加了DCIM并“增强了单一的玻璃窗格”。

Fussenegger说,人工智能可以在未来进一步发挥作用。“墨水甚至还不干,可能它还没有打到纸上。”他说,但智能设备可以在数据中心的日常实际维护和操作中发挥作用。

有一天,机器人可以为我们接管“清洁或货架设备,所以我不必担心人员处于冷热通道区域。有些杂货店正在使用人工智能扫除。”

然而,即使这些极端观点也会受到限制。Fussenegger说:“我认为我们总是需要那里的人作为替补。”

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询