作者 | Andrew Ste
编译 | CDA数据分析师
How to Become More Marketable as a Data Scientist
作为一名数据科学家,你处在一个高需求的位置。那么,你如何才能更好地提高你的市场竞争力呢?看看这些目前雇主在2019年最想要的数据科学家技能趋势。
这个标题在你看来可能有点奇怪,好像是,如果你是2019年的数据科学家,你已上市...
由于数据科学对当今的商业有着巨大的影响,对DS专家的需求也在增长。目前我正在写这篇文章,仅LinkedIn上就有144527个数据科学工作。但是,重要的是,如何把握这个行业的脉搏,以意识到最快和最有效的数据科学解决方案。为了帮助你,我们对数据痴迷的CV编译器团队分析了部分职位空缺,确定了2019年的数据科学就业趋势。
2019年最受欢迎的数据科学技能
下图是雇主在2019年向数据科学工程师寻求的技能:
对于这一分析,我们查看了StackOverflow、AngelList和类似网站的300个数据科学空缺。有些术语可能在一份工作清单中重复不止一次。
注:请记住,这项研究代表的是雇主的偏好,而不是数据科学工程师自己的偏好。
显然,数据科学更多地是关于基础知识,而不是框架和库,但仍然有一些趋势和技术值得注意。
大数据
根据2018年大数据分析市场研究,企业采用大数据的比例从2015年的17%飙升至2018年的59%。因此,大数据工具的流行程度也越来越高。如果我们不考虑ApacheSPark和Hadoop,(我们将在下一节中详细讨论后者),最流行的方法是MapReduce (36), and Redshift (29).
尽管Spark和云存储广受欢迎,但是Hadoop的“时代”还没有结束。因此,有些雇主仍然期望应聘者熟悉 Apache Pig (30), HBASE(32)和类似的技术。HDFS(20)空缺职位中仍有提及。
实时数据处理
随着各种传感器、移动设备和物联网(18)公司的目标是从实时数据处理中获得更多的洞察力.因此,流分析平台,如Apache Flink(21)在一些雇主中很受欢迎。
特征工程与超参数整定
准备数据和选择模型参数是任何数据科学家工作的关键部分。术语数据挖掘(128)在雇主中很受欢迎。一些雇主也非常重视超参数调参(21)。然而,作为一名数据科学家,您需要首先需要关注特征工程..为您的模型选择最好的特性很重要,因为它们决定了您的模型在其创建的早期阶段是否成功。
处理数据并从中提取有价值的见解的能力是至关重要的。然而,数据可视化(55)对于任何数据科学家来说,技能同样重要。至关重要的是,您可以任何团队成员或客户都能理解的格式表示您的工作成果。至于数据可视化工具,雇主更喜欢。Tableau (54)
总趋势
在职位空缺方面,我们遇到了这样的条件:AWS (86), Docker(36)和 Kubernetes (24)。因此,软件开发行业的总体趋势也适用于数据科学领域。
这个评级中的技术水平是相当的。然而,在数据科学中,有些事情和编码一样重要。这是一种从“数据输出”(如最终数据集和趋势)、可视化以及用这些数据讲述故事的能力。而且,这也是以一种可以理解的方式展示这些发现的能力。了解你的听众-如果他们是博士,以适当的方式和他们交谈,但是如果他们来自C套件,他们不会关心编程,只关心结果和ROI。
——卡拉·金特 数据科学家/所有者
快照数据对于了解当前市场状况是有用的,但它并不代表趋势,因此很难仅仅根据快照来规划未来。我要说的是,R的使用量将继续稳步下降(MATLAB也是如此),而Python在数据科学家中的流行程度将持续上升。Hadoop和BigData之所以上榜,是因为该行业有些惰性:Hadoop将消失(没有人会认真投资),大数据也不再是热门趋势。人们是否需要投入时间学习Scala尚不清楚:Google正式支持Kotlin(也是一种JVM语言),它更容易学习,而Scala有一个陡峭的学习曲线。我也对TensorFlow的未来持怀疑态度:学术界已经转向PyTorch,与其他行业相比,学术界在数据科学方面的影响力最大。(这些意见是我的,可能不代表高德纳的观点。)
——安德里·布尔科夫 高德纳机械学习主任, 百页机器学习书作者
PyTorch是用GPU对CUDA张量进行数学运算强化学习的动力。它也是一个更强大的框架,可以同时在多个GPU上并行代码,而TensorFlow要求将每个操作封装到一个设备上。PyTorch还建立了适用于递归神经网络的动态图。基于TensorFlow的TensorFlow生成静态图表,与基于火炬的PyTorch相比,学习起来更加复杂。TensorFlow反映了更多的开发人员和研究人员。PyTorch将在构建机器学习仪表板可视化工具(如TensorBoard)时显示出更大的发展势头。PyTorch在调试和数据可视化库(Matplotlib)和海运库方面更像Pythonic。Python的大多数调试工具也可以用来调试PyTorch。TensorFlow附带了自己的调试工具tfdbg。
——Ganapathi Pulipaka博士,埃森哲首席数据科学家,50强科技领袖奖获奖者
我认为数据科学的“工作”不同于数据科学的“职业”。工作列表提供了对市场需要的特定技能的洞察力,但对于职业生涯来说,我所见过的最重要的技能之一是学习能力。数据科学是一个快速发展的领域,如果要取得长期的成功,您需要能够轻松地获得新的技术、工具和领域知识。要做到这一点,就要挑战自己,避免过于舒适。
——里昂·里斯伯格创始人/策展人,数据药剂
数据科学是一个快速发展和复杂的行业,一般知识和特定技术的经验同样重要。我希望这篇文章能帮助你更好地了解2019年你需要的两种技能。祝好运!
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10