作者 | Andrew Ste
编译 | CDA数据分析师
How to Become More Marketable as a Data Scientist
作为一名数据科学家,你处在一个高需求的位置。那么,你如何才能更好地提高你的市场竞争力呢?看看这些目前雇主在2019年最想要的数据科学家技能趋势。
这个标题在你看来可能有点奇怪,好像是,如果你是2019年的数据科学家,你已上市...
由于数据科学对当今的商业有着巨大的影响,对DS专家的需求也在增长。目前我正在写这篇文章,仅LinkedIn上就有144527个数据科学工作。但是,重要的是,如何把握这个行业的脉搏,以意识到最快和最有效的数据科学解决方案。为了帮助你,我们对数据痴迷的CV编译器团队分析了部分职位空缺,确定了2019年的数据科学就业趋势。
2019年最受欢迎的数据科学技能
下图是雇主在2019年向数据科学工程师寻求的技能:
对于这一分析,我们查看了StackOverflow、AngelList和类似网站的300个数据科学空缺。有些术语可能在一份工作清单中重复不止一次。
注:请记住,这项研究代表的是雇主的偏好,而不是数据科学工程师自己的偏好。
显然,数据科学更多地是关于基础知识,而不是框架和库,但仍然有一些趋势和技术值得注意。
大数据
根据2018年大数据分析市场研究,企业采用大数据的比例从2015年的17%飙升至2018年的59%。因此,大数据工具的流行程度也越来越高。如果我们不考虑ApacheSPark和Hadoop,(我们将在下一节中详细讨论后者),最流行的方法是MapReduce (36), and Redshift (29).
尽管Spark和云存储广受欢迎,但是Hadoop的“时代”还没有结束。因此,有些雇主仍然期望应聘者熟悉 Apache Pig (30), HBASE(32)和类似的技术。HDFS(20)空缺职位中仍有提及。
实时数据处理
随着各种传感器、移动设备和物联网(18)公司的目标是从实时数据处理中获得更多的洞察力.因此,流分析平台,如Apache Flink(21)在一些雇主中很受欢迎。
特征工程与超参数整定
准备数据和选择模型参数是任何数据科学家工作的关键部分。术语数据挖掘(128)在雇主中很受欢迎。一些雇主也非常重视超参数调参(21)。然而,作为一名数据科学家,您需要首先需要关注特征工程..为您的模型选择最好的特性很重要,因为它们决定了您的模型在其创建的早期阶段是否成功。
处理数据并从中提取有价值的见解的能力是至关重要的。然而,数据可视化(55)对于任何数据科学家来说,技能同样重要。至关重要的是,您可以任何团队成员或客户都能理解的格式表示您的工作成果。至于数据可视化工具,雇主更喜欢。Tableau (54)
总趋势
在职位空缺方面,我们遇到了这样的条件:AWS (86), Docker(36)和 Kubernetes (24)。因此,软件开发行业的总体趋势也适用于数据科学领域。
这个评级中的技术水平是相当的。然而,在数据科学中,有些事情和编码一样重要。这是一种从“数据输出”(如最终数据集和趋势)、可视化以及用这些数据讲述故事的能力。而且,这也是以一种可以理解的方式展示这些发现的能力。了解你的听众-如果他们是博士,以适当的方式和他们交谈,但是如果他们来自C套件,他们不会关心编程,只关心结果和ROI。
——卡拉·金特 数据科学家/所有者
快照数据对于了解当前市场状况是有用的,但它并不代表趋势,因此很难仅仅根据快照来规划未来。我要说的是,R的使用量将继续稳步下降(MATLAB也是如此),而Python在数据科学家中的流行程度将持续上升。Hadoop和BigData之所以上榜,是因为该行业有些惰性:Hadoop将消失(没有人会认真投资),大数据也不再是热门趋势。人们是否需要投入时间学习Scala尚不清楚:Google正式支持Kotlin(也是一种JVM语言),它更容易学习,而Scala有一个陡峭的学习曲线。我也对TensorFlow的未来持怀疑态度:学术界已经转向PyTorch,与其他行业相比,学术界在数据科学方面的影响力最大。(这些意见是我的,可能不代表高德纳的观点。)
——安德里·布尔科夫 高德纳机械学习主任, 百页机器学习书作者
PyTorch是用GPU对CUDA张量进行数学运算强化学习的动力。它也是一个更强大的框架,可以同时在多个GPU上并行代码,而TensorFlow要求将每个操作封装到一个设备上。PyTorch还建立了适用于递归神经网络的动态图。基于TensorFlow的TensorFlow生成静态图表,与基于火炬的PyTorch相比,学习起来更加复杂。TensorFlow反映了更多的开发人员和研究人员。PyTorch将在构建机器学习仪表板可视化工具(如TensorBoard)时显示出更大的发展势头。PyTorch在调试和数据可视化库(Matplotlib)和海运库方面更像Pythonic。Python的大多数调试工具也可以用来调试PyTorch。TensorFlow附带了自己的调试工具tfdbg。
——Ganapathi Pulipaka博士,埃森哲首席数据科学家,50强科技领袖奖获奖者
我认为数据科学的“工作”不同于数据科学的“职业”。工作列表提供了对市场需要的特定技能的洞察力,但对于职业生涯来说,我所见过的最重要的技能之一是学习能力。数据科学是一个快速发展的领域,如果要取得长期的成功,您需要能够轻松地获得新的技术、工具和领域知识。要做到这一点,就要挑战自己,避免过于舒适。
——里昂·里斯伯格创始人/策展人,数据药剂
数据科学是一个快速发展和复杂的行业,一般知识和特定技术的经验同样重要。我希望这篇文章能帮助你更好地了解2019年你需要的两种技能。祝好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31