热线电话:13121318867

登录
首页精彩阅读8 段用于数据清洗 Python 代码
8 段用于数据清洗 Python 代码
2019-11-27
收藏
8 段用于<a href='/map/shujuqingxi/' style='color:#000;font-size:inherit;'>数据清洗</a> Python 代码

作者|Kin Lim Lee

编译|量子位

最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。

数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。

这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。大家可以把这篇文章收藏起来,当做工具箱使用。

涵盖8大场景的数据清洗代码

这些数据清洗代码,一共涵盖8个场景,分别是:

删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳(从字符串到日期时间格式)

删除多列

在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。

def drop_multiple_col(col_names_list, df): 
 
 AIM -> Drop multiple columns based on their column names 
 INPUT -> List of column names, df
 OUTPUT -> updated df with dropped columns 
 ------
 
 df.drop(col_names_list, axis=1, inplace=True)
 return df

转换数据类型

当数据集变大时,需要转换数据类型来节省内存。

def change_dtypes(col_int, col_float, df): 
 
 AIM -> Changing dtypes to save memory
 INPUT -> List of column names (int, float), df
 OUTPUT -> updated df with smaller memory 
 ------
 
 df[col_int] = df[col_int].astype( int32 )
 df[col_float] = df[col_float].astype( float32 )

将分类变量转换为数值变量

一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化

def convert_cat2num(df):
 # Convert categorical variable to numerical variable
 num_encode = { col_1 : { YES :1, NO :0},
 col_2 : { WON :1, LOSE :0, DRAW :0}} 
 df.replace(num_encode, inplace=True) 

检查缺失数据

如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。

def check_missing_data(df):
 # check for any missing data in the df (display in descending order)
 return df.isnull().sum().sort_values(ascending=False)

删除列中的字符串

有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。

def remove_col_str(df):
 # remove a portion of string in a dataframe column - col_1
 df[ col_1 ].replace(, , regex=True, inplace=True)
 # remove all the characters after  (including ) for column - col_1
 df[ col_1 ].replace( .* , , regex=True, inplace=True)

删除列中的空格

数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用。

def remove_col_white_space(df):
 # remove white space at the beginning of string 
 df[col] = df[col].str.lstrip()

用字符串连接两列(带条件)

当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。根据需要,结尾处的字母也可以在连接完成后删除。

def concat_col_str_condition(df):
 # concat 2 columns with strings if the last 3 letters of the first column are pil
 mask = df[ col_1 ].str.endswith( pil , na=False)
 col_new = df[mask][ col_1 ] + df[mask][ col_2 ]
 col_new.replace( pil , , regex=True, inplace=True) # replace the pil with emtpy space

转换时间戳(从字符串到日期时间格式)

在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

def convert_str_datetime(df): 
 
 AIM -> Convert datetime(String) to datetime(format we want)
 INPUT -> df
 OUTPUT -> updated df with new datetime format 
 ------
 
 df.insert(loc=2, column= timestamp , value=pd.to_datetime(df.transdate, format= %Y-%m-%d %H:%M:%S.%f )) 

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询