作者 | 数据海洋
来源 | haiyangxinyong
一名数据分析师不管在什么行业,在什么类型的企业任职,把服务公司的业务流程、业务逻辑、业务与数据对应起来这是基础的基础。在这个前提下,通过我业务方的沟通与交流,你应该要了解的信息,在时间维度上,可能是未来1个月,3个月,6个月或者12个月:
了解信息后,以KPI具体数值的为例:数据分析师可以多问自己几个为什么,然后再和业务沟通你的理解,你才有可能真正理解KPI背后的逻辑与原因。业务包括:
很多数据分析师其实都不愿意或者认为去了解和理解这些内容不重要,或者感觉和自己做的事情无关。数据分析师从做的内容来说,可以分成以下几个层次,每次层次的内容和分析师所处的阶段和数据分析师资历有关系。
数据需求处理
所谓有数据需求,就是业务团队根据业务需要。向你提出的希望分析师能从数据库中提取的数据内容。例如:本月做了一个促销活动,想知道促销活动带来了多少新客、顾客,同时想看一下,老客户从过去某段时间内累计消费的频次分布。业务基于得到的数据进行活动总结,来分析这次活动是否达到预期。
在一些业务快速发展的企业,数据需求处理往往占据了数据分析师非常大的工作量。对于初级数据分析师来说,可能占据了他们80%左右的工作时间。
很多数据分析师发现,特别是初级数据分析师在工作一段时间后。天天都是拉数据,处理为完的数据需求;公司的大数据平台或者数据仓库建设不是那么完善,数据提取效率比较低。
有时候因为数据底层的问题,导致提取数据的时候,可能用的表不一样,导致数据取错误的数据。数据仓库底层往往表非常多,1千多张是很正常的。很多公司的数据开发/治理不是那么好,导致表的生命周期管理不是很好。经常对不常用的表可能会使用错误。
往往抱怨,数据分析师好像非常没有“技术”含量。但在我个人认为,这往往是最有“技术”含量的,数据需求往往是帮助一个数据分析师,去理解业务,理解业务痛点,和业务建立紧密关系的最重要的场景。
当我还是一个初级数据分析师的时候:
在处理前:
在收到业务数据需求的时候,我往往都会去思考,给自己提几个问题:
为什么要提这个需求?
业务中是谁真正会用这个数据?
要解决的问题是什么?
用这些数据能不能真正解决业务的问题?
在处理后:
当我给出数据需求的时候,一般我会把每个数据的口径说明清楚,对自己给出的数据做出检查。很多时候我会根据我的理解,再对这个需求提供多一些数据内容,帮助他可能要做进一步的数据分析。
对应数据需求的代码,我们做一下归档。往往很多时候,很多业务的数据需求都是会重复的或者相差不大,用写的代代码修改提取数据,速度要快很多。
在处理数据需求过程中,会和业务沟通确定一下数据口径,也一起问一下为什么会需要这个需求,如果态度比较好,一般业务同学都很愿意和你分享。通过与数据需求建立联系后,有空可以和业务一起吃吃饭,交流交流,会让你更清楚业务情况,这样你也更好的知道应该如何提供数据服务,谁需要用相关数据来干什么。“数据需求是理解业务问题与痛点,与业务伙伴建立沟通的桥梁”
经验分享:
在业务比较理解,数据比较熟悉后,我处理数据需求的时候,往往我会在理解完数据需求的基础,主动和业务做一次沟通,一般是说我们一起确定数据口径。然后对数据需求中的数据口径,时间范围作一个讨论,通过确定数据需求。也顺便了解一下业务。
很多同行会说,有时候很忙,没有时候确定。其实,如果你自己有理解清楚需求再加上沟通数据需求,对你后续数据需求处理效率,以及避免需求处理反工有很大帮助。
小观点viewpoint 如果你所有公司有非常多的各种临时需求,一方面:一般说明公司业务还在发展或者变化中,很需要数据来支持和帮助。另一方面:如果你不能很好的响应与处理需求,对你来说是个坏事,你会天天认为自己的工作就是在处理需求,天天都在写SQL代码,没有什么价值。
数据分析师在处理数据需求的同时,必然都是各种数据报表的需求。各个开发或者设计过报表开发的数据分析师,有没有思考过这些问题:
经验分享:
一个好的数据分析师,往往都有一颗“好奇心”。往往对任何事情都会有很多为什么?对一个数据背后,数据分析师和普通人的思维可能会不一样。同样看到某个报道上,某个城市人均月收入破8千,你的感觉是什么?好奇的数据分析师可以会问以下问题:
基于这些进一步的数据后,才能对这些数据背后的东西做判断。所以在设计报表的时候就要基于业务场景,来思考要用什么样的数据来帮助业务做出更正的判断。
数据报表设计
在设计报表的时候经验总结来看,可以不断问以几个问题,从而可以帮助更好的把数据报表设计好:
什么时候应该开发数据报表提供给业务团队使用。当业务提出要开发数据报表的时候,数据分析师应该有基于业务知识的基础上进行判断。正常应该在二种情况下比较适合开发数据报表:
经验分享:收到报表需求后,数据分析师应该先有判断。并不应该是收到数据需求后,立即就为开发数据报表做准备,多分析这个数据报表需求,从业务稳定性、数据需求频率等角度考虑。如果不开发成数据报表,可以提供其它方式满足业务。
小结
一个数据分析师,如果可以把数据报表设计好,数据需求处理好,对于业务来说,满足了业务基础的数据服务,为业务基于数据对业务异常的定位、监控。
当发现业务KPI数据指标不好,我们定位好问题在哪发生?接下来应该要回答的,解决怎么问题,怎么办?就需要我们开始针对具体的业务问题,和业务场景进行专项的数据分析。下一篇我们一起来探讨,如何开展一个数据分析。
如果您是以下几种情况之一:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31