作者 | Low Wei Hong
译者 | Sambodhi
导读:数据科学其实就是一门数学、计算机、软件相关的复合型的技术,离开编程自然是无法存在的。无论是数据科学家还是数据分析师,都需要跨学科人才,必须知道如何操作代码以便告诉计算机如何分析数据。他们要比软件工程师更擅长统计学,比统计学家更擅长软件工程,需要掌握的知识有数学统计、编程能力、机器学习、研究能力等。
如果我了解机器学习算法的全部数学逻辑,但我却不能很好地进行编程,那我还有机会进入数据科学领域吗? 如果我只是勉强了解哪些机器学习算法背后的数学知识,但我可以很好地进行编程,那我有没有资格成为一名数据科学家?
我希望,在我大学毕业前努力进入数据科学领域之前就能知道这个答案是什么。
先说一下我的背景。我有数学背景,但在大学期间并没有学过多少编程课程。我在大学学过的编程语言包括 R、C++ 和 Matlab。
Matlab 并不是开源语言,主要用于研究行业。R 没有 Python 那样拥有庞大的社区,尤其是在数据科学相关的库中。C++(C 族)仍然是编程的基础。所以如果你正在学习编程的话,我还是建议你学习 C 族的语言。
当我在实习期间,Python 在这个行业使用得最多。因此,我仍然需要自己去学习 Python。此外,我就只选修了一门与数学有关的机器学习课程。
我感到有些不知所措,因为,我不仅要学习数学,同时还要提高我的编程技能。因此,当时我就在想,我应该将更多的精力放在编程上呢,还是放在学习数学上呢?
数学,还是编程?
我将分享我的观点,即在目前的行业中,哪一个实际上更受欢迎。
让我来问你一个问题。如果你是数据科学的技术主管,并且手下已经有很多博士在为你工作,同时,你还想扩大团队。现在你心目中有两个候选人,其中一个更擅长编程,另一个更擅长数学概念。那么,你会选择哪一个候选人呢?
这个问题并没有正确或错误的答案,但跟据我的观察,他们通常会喜欢在编程方面拥有更好技能的那些人。
你可能会想,为什么会是这样呢?
原因很简单,因为大多数数据科学项目的方向,都是由博士提供的,他们应该有更多的知识。因此,能够更快地实现多种方法的人,将是最后一个坚持到底的人。
然后,你可能会问,都说统计是数据科学的基础,而你却告诉我,为了进入数据科学领域,只需学习如何编程就可以了?
不是的,数学在数据科学中仍然非常重要。 那些更懂数学的人,将会是能够提出新想法来改进机器学习模型的那些人。
目前市场上有大量的机器学习模型。因此,知道在什么样的场景中使用哪些模型,肯定会为你节省大量时间。此外,当之前表现很好的模型,突然开始出现性能下降时,你就能找出可能的原因了。
但是,如果你只是想进入数据科学领域的话,就不需要在数学部分深入研究太多细节。数据科学并不只是关于如何推导或求解数学方程式。 更重要的是,要 知道如何定义并解决业务问题。
例如,你在一家电子商务公司工作。你得到一个任务,让你实现对列表进行自动分类。可能,你需要做的第一步就是定义问题,也许是说明你需要实现的时间表和正确性。下一步,你将考虑模型可能面临的一些问题,并需要澄清这些问题。
假设,如果列表名称和图片属于不同的类别,那么应该如何对列表进行分类?是按图片进行分类呢,还是按列表名称进行分类呢?
在理解了你的团队同意的标准作业程序(Standard Operating Procedure,SOP)之后,那么只有你才能启动这个项目。
回到主题,数据科学迫切需要的技能之一是 分叉 GitHub 代码并在数据集上进行实验的能力。因此,如果你擅长编程的话,那么无论编程语言是什么,你都能够测试不同的方法。
例如,你正在使用给定的数据集来训练 NER(Name Entity Recognition,命名实体识别)模型。让我们想象一下,目前还没有人用 Python 在 NER 上编写代码,而唯一可用的代码,由斯坦福大学提供,用 Java 编写的。遇到这种情况应该怎么办?因此,掌握不同编程语言的知识绝对是一个加分项,这样,你就可以节省用 Python 编写整个代码的时间,以便训练模型。
另一方面,如果你深入学习机器学习的数学部分,你就 会对你应该关注哪些指标更加敏感,这要取决于不同的问题。 假设你正在从事一个信用欺诈项目。你应该关注的指标就不再是正确性,而应该是 f1-score 等。因为你的目标是不仅能够识别尽可能多的欺诈案件,而且还要保持准确率。
最后的感想
在数据科学领域中,数学和编程同等重要,但如果你正考虑在数据科学领域转行或者开始你的职业生涯,我想说的是,对于各种机器学习模型来说,掌握编程技能要比深入钻研数学更为重要。
开始进行更多的实际项目,并能够在面试过程中清晰地陈述和回答问题,这肯定会增加你进军数据科学领域的机会。
进入数据科学领域可没那么容易,但请记住,不要放弃,继续努力!
你所有的努力很快就会有回报,不管有多难,要坚持你正在做的事情。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14