作者 | Low Wei Hong
译者 | Sambodhi
导读:数据科学其实就是一门数学、计算机、软件相关的复合型的技术,离开编程自然是无法存在的。无论是数据科学家还是数据分析师,都需要跨学科人才,必须知道如何操作代码以便告诉计算机如何分析数据。他们要比软件工程师更擅长统计学,比统计学家更擅长软件工程,需要掌握的知识有数学统计、编程能力、机器学习、研究能力等。
如果我了解机器学习算法的全部数学逻辑,但我却不能很好地进行编程,那我还有机会进入数据科学领域吗? 如果我只是勉强了解哪些机器学习算法背后的数学知识,但我可以很好地进行编程,那我有没有资格成为一名数据科学家?
我希望,在我大学毕业前努力进入数据科学领域之前就能知道这个答案是什么。
先说一下我的背景。我有数学背景,但在大学期间并没有学过多少编程课程。我在大学学过的编程语言包括 R、C++ 和 Matlab。
Matlab 并不是开源语言,主要用于研究行业。R 没有 Python 那样拥有庞大的社区,尤其是在数据科学相关的库中。C++(C 族)仍然是编程的基础。所以如果你正在学习编程的话,我还是建议你学习 C 族的语言。
当我在实习期间,Python 在这个行业使用得最多。因此,我仍然需要自己去学习 Python。此外,我就只选修了一门与数学有关的机器学习课程。
我感到有些不知所措,因为,我不仅要学习数学,同时还要提高我的编程技能。因此,当时我就在想,我应该将更多的精力放在编程上呢,还是放在学习数学上呢?
数学,还是编程?
我将分享我的观点,即在目前的行业中,哪一个实际上更受欢迎。
让我来问你一个问题。如果你是数据科学的技术主管,并且手下已经有很多博士在为你工作,同时,你还想扩大团队。现在你心目中有两个候选人,其中一个更擅长编程,另一个更擅长数学概念。那么,你会选择哪一个候选人呢?
这个问题并没有正确或错误的答案,但跟据我的观察,他们通常会喜欢在编程方面拥有更好技能的那些人。
你可能会想,为什么会是这样呢?
原因很简单,因为大多数数据科学项目的方向,都是由博士提供的,他们应该有更多的知识。因此,能够更快地实现多种方法的人,将是最后一个坚持到底的人。
然后,你可能会问,都说统计是数据科学的基础,而你却告诉我,为了进入数据科学领域,只需学习如何编程就可以了?
不是的,数学在数据科学中仍然非常重要。 那些更懂数学的人,将会是能够提出新想法来改进机器学习模型的那些人。
目前市场上有大量的机器学习模型。因此,知道在什么样的场景中使用哪些模型,肯定会为你节省大量时间。此外,当之前表现很好的模型,突然开始出现性能下降时,你就能找出可能的原因了。
但是,如果你只是想进入数据科学领域的话,就不需要在数学部分深入研究太多细节。数据科学并不只是关于如何推导或求解数学方程式。 更重要的是,要 知道如何定义并解决业务问题。
例如,你在一家电子商务公司工作。你得到一个任务,让你实现对列表进行自动分类。可能,你需要做的第一步就是定义问题,也许是说明你需要实现的时间表和正确性。下一步,你将考虑模型可能面临的一些问题,并需要澄清这些问题。
假设,如果列表名称和图片属于不同的类别,那么应该如何对列表进行分类?是按图片进行分类呢,还是按列表名称进行分类呢?
在理解了你的团队同意的标准作业程序(Standard Operating Procedure,SOP)之后,那么只有你才能启动这个项目。
回到主题,数据科学迫切需要的技能之一是 分叉 GitHub 代码并在数据集上进行实验的能力。因此,如果你擅长编程的话,那么无论编程语言是什么,你都能够测试不同的方法。
例如,你正在使用给定的数据集来训练 NER(Name Entity Recognition,命名实体识别)模型。让我们想象一下,目前还没有人用 Python 在 NER 上编写代码,而唯一可用的代码,由斯坦福大学提供,用 Java 编写的。遇到这种情况应该怎么办?因此,掌握不同编程语言的知识绝对是一个加分项,这样,你就可以节省用 Python 编写整个代码的时间,以便训练模型。
另一方面,如果你深入学习机器学习的数学部分,你就 会对你应该关注哪些指标更加敏感,这要取决于不同的问题。 假设你正在从事一个信用欺诈项目。你应该关注的指标就不再是正确性,而应该是 f1-score 等。因为你的目标是不仅能够识别尽可能多的欺诈案件,而且还要保持准确率。
最后的感想
在数据科学领域中,数学和编程同等重要,但如果你正考虑在数据科学领域转行或者开始你的职业生涯,我想说的是,对于各种机器学习模型来说,掌握编程技能要比深入钻研数学更为重要。
开始进行更多的实际项目,并能够在面试过程中清晰地陈述和回答问题,这肯定会增加你进军数据科学领域的机会。
进入数据科学领域可没那么容易,但请记住,不要放弃,继续努力!
你所有的努力很快就会有回报,不管有多难,要坚持你正在做的事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31