作者 | CDA数据分析师
之前是把所有的菜品都洗好并放在不同的盛放的容器里。现在要进行切配了,需要把这些菜品挑选出来,比如想要做一盘凉拌黄瓜,需要先把黄瓜在他所在的容器中找出来;要做一盘可乐鸡翅,需要先从容器中把鸡翅找出来。
数据分析也是同样的道理,你要分析什么,首先要把对应的数据筛选出来。
常规的数据选择主要有列选择、行选择、行列同时选择三种方式。
一、列选择
1、选择某一列/某几列
(1)Excel实现
在Excel中选择某一列直接用鼠标选中这一列即可;如果要同时选择多列,且待选择的列不是相邻的,这个时候就可以先选中其中一列,然后按住Ctrl键不放,再选择其他列。举个例子,同时选择客户姓名和成交时间这两列,如下图所示。
(2)Python实现
在Python中我们要想获取某列只需要在表df后面的方括号中指明要选择的列名即可。如果是一列,则只需要传入一个列名;如果是同时选择多列,则传入多个列名即可,多个列名用一个list存起来。
在Python中我们把这种通过传入列名选择数据的方式称为普通索引。
除了传入具体的列名,我们还可以传入具体列的位置,即第几列,对数据进行选取,通过传入位置来获取数据时需要用到iloc方法。
在上面的代码中,iloc 后的方括号中逗号之前的部分表示要获取的行的位置,只输入一个冒号,不输入任何数值表示获取所有的行;逗号之后的方括号表示要获取的列的位置,列的位置同样是也是从0开始计数。
我们把这种通过传入具体位置来选择数据的方式称为位置索引。
2、选择连续的某几列
(1)Excel实现
在Excel中,要选择连续的几列时,直接用鼠标选中这几列即可操作。当然了,你也可以先选择一列,然后按住 Ctrl 键再去选择其他列,由于要选取的列是连续的,因此没必要这么麻烦。
(2)Python实现
在Python中可以通过前面介绍的普通索引和位置索引获取某一列或多列的数据。当你要获取的是连续的某几列,用普通索引和位置索引也是可以做到的,但是因为你要获取的列是连续的,所以只要传入这些连续列的位置区间即可,同样需要用到 iloc方法。
在上面的代码中,iloc 后的方括号中逗号之前的表示选择的行,当只传入一个冒号时,表示选择所有行;逗号后面表示要选择列的位置区间,0:3表示选择第1列到第4列之间的值(包含第1列但不包含第4列),我们把这种通过传入一个位置区间来获取数据的方式称为切片索引。
二、行选择
1、选择某一行/某几行
(1)Excel实现
在Excel中选择行与选择列的方式是一样的,先选择一行,按住Ctrl键再选择其他行。
(2)Python实现
在Python中,获取行的方式主要有两种,一种是普通索引,即传入具体行索引的名称,需要用到loc方法;另一种是位置索引,即传入具体的行数,需要用到iloc方法。
为了让大家看得更清楚,我们对行索引进行自定义。
2、选择连续的某几行
(1)Excel实现
在Excel中选择连续的某几行与选择连续的某几列方法一致,不再赘述。
(2)Python实现
在Python中,选择连续的某几行时,你同样可以把要选择的每一个行索引名字或者行索引的位置输进去。很显然这是没有必要的,只要把连续行的位置用一个区间表示,然后传给iloc即可。
3、选择满足条件的行
前两节获取某一列时,获取的是这一列的所有行,我们还可以只筛选出这一列中满足条件的值。
比如年龄这一列,需要把非异常值(大于200的属于异常值),即小于200岁的年龄筛选出来,该怎么实现呢?
(1)Excel实现
在Excel中我们直接使用筛选功能,将满足条件的值筛选出来,筛选方法如下图所示。
筛选年龄小于200的数据前后的对比如下图所示。
(2)Python实现
在Python中,我们直接在表名后面指明哪列要满足什么条件,就可以把满足条件的数据筛选出来。
我们把上面这种通过传入一个判断条件来选择数据的方式称为布尔索引。
传入的条件还可以是多个,如下为选择的年龄小于200且唯一识别码小于102的数据。
三、行列同时选择
上面的数据选择都是针对单一的行或列进行选择,实际业务中我们也会用到行、列同时选择,所谓的行、列同时选择就是选择出行和列的相交部分。
例如,我们要选择第二、三行和第二、三列相交部分的数据,下图中的阴影部分就是最终的选择结果。
行列同时选择在Excel中主要是通过鼠标拖曳实现的,与前面的单一行/列选择方法一致,此处不再赘述,接下来主要讲讲在Python中如何实现。
1、普通索引+普通索引选择指定的行和列
普通索引+普通索引就是通过同时传入行和列的索引名称进行数据选择,需要用到loc方法。
loc方法中的第一对方括号表示行索引的选择,传入行索引名称;loc方法中的第二对方括号表示列索引的选择,传入列索引名称。
2、位置索引+位置索引选择指定的行和列
位置索引+位置索引是通过同时传入行、列索引的位置来获取数据,需要用到iloc方法。
在 iloc 方法中的第一对方括号表示行索引的选择,传入要选择行索引的位置;第二对方括号表示列索引的选择,传入要选择列索引的位置。行和列索引的位置都是从0开始计数。
3、布尔索引+普通索引选择指定的行和列
布尔索引+普通索引是先对表进行布尔索引选择行,然后通过普通索引选择列。
上面的代码表示选择年龄小于200的订单编号和年龄,先通过布尔索引选择出年龄小于200的所有行,然后通过普通索引选择订单编号和年龄这两列。
4、切片索引 + 切片索引选择指定的行和列
切片索引 + 切片索引是通过同时传入行、列索引的位置区间进行数据选择。
5、切片索引 + 普通索引选择指定的行和列
前面我们说过,如果是普通索引,就直接传入行或列名,用 loc 方法即可;如果是切片索引,也就是传入行或者列的位置区间,要用 iloc 方法。如果是切片索引+普通索引,也就是行(列)用切片索引,列(行)用普通索引,这种交叉索引要用ix方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31