作者 | CDA数据分析师
应用聚类算法比选择最佳算法要容易得多。每种类型都有其优缺点,如果您要争取一个整洁的集群结构,则必须加以考虑。数据聚类是安排正确的整个数据模型的重要步骤。为了进行分析,应根据共同点整理信息量。主要问题是,什么通用性参数可以提供最佳结果,以及“最佳”定义中到底蕴含着什么。
本文对于新手数据科学家或想刷新其在该主题上的记忆的专家应该是有用的。它包括最广泛使用的聚类算法及其深入的综述。根据每种方法的特殊性,提供了考虑其应用的建议。
四种基本算法以及如何选择一种
根据聚类模型,可以区分四种常见的算法类别。一般而言,算法不少于100种,但是它们的流行程度以及应用领域都很适中。
分层聚类
基于整个数据集对象之间距离的计算,聚类称为基于连通性或分层。根据算法的“方向”,它可以组合或反过来划分信息数组- 聚集和分裂的名称正是源于这种精确的变化。最为流行和合理的类型是聚集型,您可以从输入数据点的数量开始,然后将这些数据点组合成越来越大的簇,直到达到极限。
基于连接的聚类的最突出示例是植物的分类。数据集的“树”以特定物种开始,以一些植物王国结束,每个植物王国都由更小的簇组成(门,类,阶等)。
应用基于连接性的算法之一后,您将收到树状图数据,该树状图向您展示了信息的结构,而不是集群上的不同分隔。这样的功能可能既有好处,也有坏处:算法的复杂性可能变得过高或根本不适用于几乎没有层次的数据集。它还显示出较差的性能:由于存在大量的迭代,因此完整的处理将花费不合理的时间。最重要的是,使用分层算法不会获得精确的结构。
同时,从计数器要求的输入数据下降到数据点的数量,该点不会对最终结果产生实质性影响,也不会影响预设的距离度量,该距离度量也可以进行粗略测量和近似计算。
KMeans聚类
根据我的经验,基于质心的聚类由于其比较简单而成为最常出现的模型。该模型旨在将数据集的每个对象分类为特定的聚类。簇数( k)是随机选择的,这可能是该方法最大的“弱点”。由于与 k近邻(kNN)相似,该 k均值算法在机器学习中特别受欢迎。
计算过程包括多个步骤。首先,选择输入数据,这是应将数据集划分为的大致聚类数。聚类的中心应放置在尽可能远的位置,这将提高结果的准确性。其次,该算法找到数据集的每个对象与每个聚类之间的距离。最小坐标(如果我们在谈论图形表示)确定了将对象移动到哪个群集。之后,将根据所有对象坐标的平均值重新计算聚类的中心。重复算法的第一步,但是重新计算了簇的新中心。除非达到某些条件,否则此类迭代将继续。例如,当集群的中心距上一次迭代没有移动或移动不明显时,该算法可能会结束。
尽管数学和编码都很简单,但k-means仍然存在一些缺点,因此我无法在所有可能的情况下使用它。那包括:
同时,期望最大化算法可以避免那些复杂情况,同时提供更高的准确性。简而言之,它计算每个数据集点与我们指定的所有聚类的关联概率。用于该聚类模型的主要“工具”是高斯混合模型(GMM) –假设数据集的点通常遵循高斯分布。
EM算法
k-means算法基本上是EM原理的简化版本。它们都需要人工输入簇数,这是方法所要面对的主要难题。除此之外,计算原理(对于GMM或k均值)很简单:簇的近似范围是在每次新迭代中逐渐指定的。
与基于质心的模型不同,EM算法允许对两个或多个聚类的点进行分类-它仅向您展示每个事件的可能性,您可以使用该事件进行进一步的分析。更重要的是,每个聚类的边界组成了不同度量的椭球体,这与k均值不同,在k均值中,聚类在视觉上表示为圆形。但是,该算法对于对象不遵循高斯分布的数据集根本不起作用。这是该方法的主要缺点:它更适用于理论问题,而不是实际的测量或观察。
DBSCAN
最后,基于密度的聚类,名称包括模型的要点–将数据集划分为聚类,计数器会输入ε参数,即“邻居”距离。因此,如果对象位于ε半径的圆(球)内,则它与群集有关。
DBSCAN(带有噪声的基于应用程序的基于密度的空间聚类)算法将逐步检查每个对象,将其状态更改为“已查看”,将其分类为OR聚类,直到最终处理整个数据集。用DBSCAN确定的簇可以具有任意形状,因此非常精确。此外,该算法不会让您计算聚类数-它是自动确定的。
尽管如此,即使像DBSCAN这样的杰作也有缺点。如果数据集由可变密度簇组成,则该方法显示的结果较差。如果对象的放置位置太近,并且无法轻松估算ε参数,也可能不是您的选择。
总结起来,没有错误选择算法之类的东西-其中有些更适合特定的数据集结构。为了始终采用最佳(更适合)算法,您需要全面了解它们的优缺点。
例如,如果某些算法不符合数据集规范,则可以从一开始就将其排除在外。为避免繁琐的工作,您可以花一些时间来记住信息,而不是选择反复试验的路径并从自己的错误中学习。
我们希望您一开始总是选择最好的算法。继续这了不起的工作吧!
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16