京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
之前的文章写了Python的基础知识,从这部分内容开始正式进入到正式的数据分析过程中,主要讲述每个数据分析过程都会用到什么操作,这些操作用Excel是怎样实现的,如果用Python,那么代码又该怎么写。
接下来的几章我们会用到Pandas、NumPy、matplotlib这几个模块,在使用它们之前我们需要先将其导入,导入的方法在Python基础知识部分提到过,一个程序中只需要导入一次即可。
为了引用模块时书写方面,上面的代码中用as分别给这几个模块起了别名。所以在本文中见到pd就是代表Pandas,见到np就是代表NumPy,见到plt就是代表matplotlib . pyplot。
Series是一种类似于一位数组的对象,由一组数据及一组与之相关的数据标签(即索引)组成。
上面这样的数据结构就是Series,第一列数字是数据标签,第二列是具体的数据,数据标签与数据是一一对应的,上面的数据用Excel表展示如下表所示:
2、创建一个Series
创建一个Series利用的方法是pd.Series(),通过给Series()方法传入不同的对象即可实现
(1)传入一个列表
传入一个列表的实际如下所示:
如果只是传入一个列表不指定数据标签,那么Series会默认使用从0开始的数做数据标签,上面的0、1、2、3就是默认的数据标签。
(2)指定索引
直接传入一个列表会使用默认索引,也可以通过设置index参数来自定义索引。
(3)传入一个字典
也可以将数据与数据标签以key:value(字典)的形式传入,这样字典的key值就是数据标签,value就是数据值。
3、利用index方法获取Series的索引
获取一组数据的索引是比较常见的需求,直接利用index方法 就可以获取Series的索引值,代码如下图所示:
4、利用values方法获取Series的值
与索引值相对用的就是获取Series的值,使用的方法是values方法。
Series是由一组数据与一组索引(行索引)组成的数据结构,而DataFrame是由一组数据与一对索引(行索引和列索引)组成的表格型数据结构。之所以叫表格型数据结构,是因为DataFrame是数据形式和Excel的数据存储形式很相近,接下来的章节围绕DataFrame这种表格型数据结构展开。下面就是一个简单的DataFrame数据结构。
上面这种数据结构和Excel的数据结构很像,既有行索引又有列索引,由行索引和列索引确定唯一值。如果把上面这种结构用Excel表展示如下图所示。
2、创建一个DataFrame
创建DataFrame使用的方法是pd.Dataframe(),通过DataFrame()的方法传入不同的对象即可实现。
(1)传入一个列表
传入一个列表的实现如下图所示:
只传入一个单一列表时,该列表的值会显示成一列,且行和列都是从0开始的默认索引。
(2)传入一个嵌套列表
当传入一个嵌套列表时,会根据嵌套列表数显示成多列数据,行、列索引同样是从0 开始的默认索引。列表里面嵌套的列表也可以换成元组。
(3)指定行、列索引
如果只给DataFrame()方法传入列表,DataFrame()方法的行、列索引都是默认值,则可以通过设置columns参数自定义列索引,设置index参数自定义行索引。
(4)传入一个字典
传入一个字典的实现如下图所示。
直接以字典的形式传入DataFrame时,字典的key值就相当于列索引,这个时候如果没有设置行索引,行索引还是使用从0 开始的默认索引,同样可以使用index参数自定义行索引,代码如下:
3、获取DataFrame的行、列索引
利用columns方法获取DataFrame的列索引。
利用index方法获取DataFrame的行索引。
4、获取DataFrame的值
获取DataFrame的值就是获取DataFrame中的某些行或列,有关行、列的选择会在后面的内容说到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24