
作者 | Matthew Mayo
编译 | CDA数据分析师
在2019年(及之前的几年)中,我们询问了许多顶级专家,2019年和2020年AI,分析,机器学习,数据科学和深度学习领域最重要的发展趋势是什么?许多顶级专家对2020年做了一些预测。去年预测的 一些趋势已经实现:
2019年也有意外惊喜,去年的专家都没有预言过NLP的突破(例如GPT-2和其他版本的BERT和Transformers)。
我们今年再次问专家:
我们收到了大约20份回复,这是第二部分,更侧重于技术,行业和部署。一些常见主题包括:AI炒作,Auto-ML,云,数据,可解释的AI,AI伦理。
以下是Meta Brown,Tom Davenport,Carla Gentry,Nikita Johnson,Doug Laney,Bill Schmarzo,Kate Strachnyi,Ronald van Loon,Fabio Vazquez和Jen Underwood的回答。
在2019年,使用“人工智能”一词来描述从真正复杂的应用程序和越来越成功的各种应用(例如自动驾驶汽车)的使用激增。我预测到2020年,人们会发现这全都是数学。
一方面,越来越多的人会开始看到现在标记为“ AI”的局限性。公众意识到面部识别技术可能会因夸张的化妆而受挫,还有那些客户服务聊天机器人背后没有经历人类丰富多彩的生活,还是属于"人工智障",还有可能花费数百万美元尝试使软件比医生更智能,但仍然会失败。
但是,“人工智能”仍然是一个热门词汇,风险资本的资金仍在滚滚涌来。2019 年前9个月,超过130亿美元流向了AI创业公司。 在2020年,人工智能这两种前景之间的差距将越来越大:公众对AI的局限性越来越怀疑,怀疑和意识的形象,以及继续在AI承诺中投入希望,梦想和金钱的商业和投资社区。
2019年的主要发展:
2020年即将出现的发展:
2019年,还一直有在炒作关于人工智能,机器学习和数据科学无法做什么,我为进入该领域的非熟练专业人士而感到可悲,而大学则向那些不愿接受培训的老师颁发所谓的证书和学位,实际并没有资格教授这些课程。
数据科学和机器学习依赖于大量数据,但是我们这一年又面临着对偏差的误解,需要解释的数据总是会面临偏差的风险。无偏的数据是独立存在的,不需要解释。
前几天,一篇文章标题引起了我的注意:“数据科学快死了吗?” 甚至在阅读之前,我最初的想法是:“不,但是所有想做的话题和炒作肯定对我们的领域没有帮助-数据科学不仅仅是编写代码”。对技术的误解加上缺乏数据和必要的基础设施将在2020年继续困扰我们,但至少有些人意识到21世纪最性感的工作毕竟并不那么性感,毕竟在我们收集意见并回答业务问题之前我们花费了大部分时间在清理和准备数据。
在2020年,让我们所有人都记住它是关于数据的,并确保我们能够以完整和透明的方式推进我们的领域,人工智能的“黑匣子”时代必须过去,我们才能继续朝着积极的方向发展。请记住,你构建的算法,模型,聊天机器人等可能会影响某写人的生活,数据库中的数据点与某人的生活相对应,因此请消除偏见,让事实为自己说话。
2019年,我们见证了许多领域的突破,这些突破使AI得以前所未有的广泛应用。诸如转移学习和强化学习之类的先进软件技术还帮助推动了AI突破和运用的发展,帮助我们在人类知识的约束下分离了系统改进。
到2020年,我们将朝着“可解释的AI”迈进,以提高AI模型和技术的透明度,责任感和可重复性。我们需要增加对每种工具的局限性以及优缺点的认识。增强的学习将增强我们对所使用产品建立信任的能力,并允许AI做出更合理的决策!
上世纪90年代初期,人工智能从平静的年代复活,再加上数据科学的主流,无非是推动了数据的发展。如今,大数据就是“正义数据”。即使其持续膨胀,其规模也不会再淹没存储或计算能力。至少不再有任何借口说任何组织都被数据的庞大性所束缚。确实,目前已经出现了逐渐改进的技术,但是,来自社交媒体平台的,在合作伙伴之间进行交换的,从网站中获取并运用于连接的设备的大量数据的涌入,导致无法预料的解释、自动化和优化问题。它还催生了以数据为中心的新业务模型。
我设想在2020年将会出现扩展信息生态系统,从而进一步使由AI和数据科学推动的业务合作伙伴之间的数字协调成为可能。一些组织可能选择构建自己的数据交换解决方案,以通过自身和其他组织的信息资产获利。其他公司将通过区块链支持的数据交换平台或提供一系列替代数据的数据聚合器来增强其高级分析功能。
2019年主要发展
2020年主要趋势
在2019年,我们看到了数据可视化/商业智能软件领域的整合,Salesforce收购Tableau Software,Google收购Looker。这项对商业智能工具的投资证明了公司在数据民主化方面的价值,并使用户能够更轻松地查看和分析其数据。
我们可以期望在2020年看到的是继续向自动化数据分析/数据科学任务转变。数据科学家和工程师需要能够扩展和解决更多问题的工具。这种需求将导致在数据科学过程的多个阶段开发自动化工具。例如,某些数据准备和清除任务是部分自动化的;但是,由于公司的独特需求,它们很难完全自动化。自动化的其他候选者包括特征工程,模型选择等。
2019年,该行业见证了可解释性人工智能和增强型分析技术的日益普及,使企业能够弥合AI巨大的潜力与基于无偏AI结果的决策技术复杂性之间的差距。全栈AI方法是2019年进行的又一项发展,旨在帮助加快创新之路并支持AI增长,同时改善不同团队和个人之间的集成和沟通。
到2020年,由于会话式AI的易用性和直观的界面,我们将看到一些客户体验改善趋势。这种自动化解决方案使公司能够扩展和改变客户体验,同时为客户提供24/7全天候服务,并为快速解决问题和提供可靠的自助服务提供了机会。此外,当我们将AI融入现有流程并努力改变我们对AI提出的问题时,Narrow Intelligence将继续支持我们如何最有效地利用人和机器的力量。
在2019年,我们看到了人工智能技术的惊人发展,主要是在深度学习方面。数据科学能够利用这些进步来解决更棘手的问题,并塑造我们所生活的世界。数据科学是利用科学来催化变化并将纸张转化为产品的引擎。我们的领域不再只是“炒作”,它正在成为一个严肃的领域。我们将看到有关数据科学及其相关知识的网络教育资源越来越多。希望我们对自己的工作方式和方法更加自信。语义技术,决策智能和知识数据科学将在未来几年成为我们的伴侣,因此我建议人们开始探索图形数据库,本体和知识表示系统。
在2019年,我们达到了组织在算法经济中竞争的转折点。市场领先的公司不是发起一个一次性项目,而是通过计划整个企业范围的AI策略来提升数据科学的知名度。 同时,成熟的数据科学组织启动了道德,治理和ML Ops计划。 不幸的是,尽管机器学习的采用率提高了成功率,但大多数人还没有。
从技术角度来看,我们目睹了混合分布式计算和无服务器架构的兴起。同时,算法,框架和Auto-ML解决方案从创新迅速发展到商品化。
到2020年,我预计个人数据安全性,法规,算法偏见和深度虚假主题将成为头条新闻。从更明亮的角度来看,可解释的AI的进步以及自然语言生成和优化技术的增强了人们的理解,将有助于弥合数据科学与业务之间的鸿沟。随着数据素养和公民数据科学计划的进一步兴起,机器学习从业人员应继续蓬勃发展。
以下是根据他们的预言而得出的相应的词云图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05