作者 | Ben Dickson
编译 | CDA数据分析师
自从第一个人类文明形成以来,医生一直是人类社区中永远存在的成员,可以治愈疾病和照顾病人。随着科学技术的进步,他们的方法已经从祈祷神灵到混合草药混合使用科学方法和先进的医疗设备来诊断,治疗和预防疾病。
如今,医生可以轻松地使患者免于疾病的危害,在过去的几个世纪中,这种疾病已经杀死了数百万人。但是仍然有更多改进的空间。
下一轮医疗保健和医学革命可能与深度学习的进步有关,深度学习是人工智能的分支,在过去十年中非常流行。深度学习已经在医学上取得了令人瞩目的成就,关于人工智能如何改变医疗保健的研究令人兴奋, 并且有很多文章探讨了深度学习算法如何帮助诊断和治疗复杂疾病。
但是,很少讨论的是学习如何可能改变我们与医生互动的方式。
医师,科学家和研究员Eric Topol博士在他的最新著作《 深度医学:人工智能如何使医疗保健再次成为人类》中阐明了AI如何解决医学和医疗保健领域的一些最大挑战。这包括医患关系面临的挑战。
在接受TechTalks采访时,Topol博士讨论了深度学习在改善医患之间的人际互动方面的一些前景,以及未来面临的一些关键挑战。
我们经常从诸如阅读生命体征,在医学扫描中寻找复杂模式,对患者进行手术以及撰写药物处方等活动来思考医学。但是在医学上,医患之间的人际互动与发生的所有科学努力一样重要。
通常,医生温暖而舒适的语气对患者的影响与治疗本身一样多。
不幸的是,在当今的卫生保健系统中,医患关系已大大恶化。医生与患者沟通的时间越来越少,而在做其他事情上的时间越来越多。
Topol博士在他的书的早期就对此进行了扩展。“当今医疗保健中的问题是缺少医疗服务。也就是说,作为医生,我们通常无法真正足够地照顾患者。而且患者不觉得自己得到了照顾,”他写道。
Topol博士在电话中对TechTalks表示:“今天,我们看到了医患关系的侵蚀,医生成为在职业倦怠中这是有史以来最高记录的职业“。
具有讽刺意味的是,部分问题来自技术进步。与一个世纪前相比,医学发生了很大变化,已经成为数字化和基于数据的领域。收集和分析数据的方法有很多,而医生和患者之间过去发生的许多交互现在已被数据收集和检查任务所取代。
但是这些任务仍然需要大量的人力来收集和分析数据,而这一切又都落在了医生的肩上。医生必须花费大量时间在数据库中输入数据,盯着监视器,而减少与患者互动的时间。发表在《内科医学年鉴》上的一项研究发现,平均而言,医生仅将其时间的49%花费在填写电子健康记录(EHR)和做案头工作上,而他们的总时间中只有27%用于直接面对临床与患者共度时光。
Topol博士说:“我们之所以如此精疲力尽,是因为医生是数据管理员,而且失去了士气。” Topol博士警告说,医生精神的减弱也会导致医疗失误。
加利福尼亚大学旧金山分校(UCSF)的另一项研究发现,在EHR中输入的数据中有82%是复制粘贴或导入的,而只有18%的信息是手动输入的。这可能会导致临床错误并导致有害的治疗决策。
幸运的是,这是AI展现出巨大希望的领域。深度学习算法的核心技术- 人工神经网络非常擅长在混乱,非结构化的数据(例如图像,音频和文本)中找到相关的模式和相关性。因此,它在计算机视觉,语音识别和自然语言处理等领域取得了长足的进步。
在医学领域,人工智能算法可以使以前需要大量人力的某些任务实现自动化。例如,人工智能算法可以减轻医生在拜访患者时做笔记的痛苦。在该领域已经进行了有趣的工作,包括Microsoft和Google的项目。机器学习算法可以从医生与患者之间的相遇中提取有意义的信息,并将其记录在患者的健康记录中。
来自自然语言处理和机器学习的AI衍生笔记非常出色。Topol博士说:“这已经在英国,中国和美国进行了试点研究。”
AI还有许多其他领域可以提高医生执行任务的速度和准确性,例如分析医学扫描和查找病历中的相关信息。总的来说,这些技术可以释放医生在病人身上花费的大部分时间。
Topol博士说:“由于时间的原因,人工智能可能是改善和恢复医患关系的最好方法,” “这是人工智能可以带给我们的许多不同事物的产物。它包括消除键盘,能够处理患者的所有数据以使医生和临床医生的生活更轻松,能够进行许多模式识别,例如扫描和幻灯片以及其他日常使用的东西。每天都可以进行,并且更准确地做到这一点。”
在《深度医学》的第3章中 ,Topol博士深入研究了深度学习算法可帮助自动执行诊断任务的许多领域,包括脑,心脏和眼部疾病。
但是Topol博士还警告说,人工智能所提供的提高的速度和效率可能会将事情引向错误的方向。“所有这些生产力,效率,工作流程改进,准确性和速度都可用于医患,因为这可能导致管理员和经理要求在任何单位时间内看更多的患者,或者读取更多的扫描图像和更多的幻灯片,并且不断。”他说。
我们如何防止这种情况发生?该行业将必须优先利用AI的进步来恢复医患关系。“默认情况下不会发生。这将需要大量的行动主义。要付出巨大的努力才能停止医学的大生意,并开始与人类建立联系,这将需要大量的努力,” Topol博士说。
鉴于对AI的普遍看法是,这里是替代人类并使他们的技能自动化的方法,这听起来可能是个奇怪的建议。一些科学家甚至建议医生完全被AI算法取代。但是Topol博士认为我们应该关注人为因素。
“这具有讽刺意味,但这是我们拥有增强人类技术的机会,人工智能在图像识别,语音识别以及技术上可以做的所有事情的所有强大方面的产物。对医生和患者而言,生活更轻松,更准确。”
医学的过程,工具,实践和设施与人类社会和科学一起发展。人工智能将为该领域带来更多改进。但是,在整个历史中一直保持不变的一件事是人类医生。这不太可能很快改变。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20