热线电话:13121318867

登录
首页精彩阅读统计学中的假设检验
统计学中的假设检验
2020-04-09
收藏
统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>

作者 | CDA数据分析师


假设(hypothesis),又称统计假设,是对总体参数的具体数值所作的陈述。假设检验(hypothesis test) 是先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。


假设检验的特点就是采用逻辑上的反证法和依据统计上 的小概率原理。小概率事件在单独一次的试验中基本上不会发生,可以不予考虑。在假设检验中,我们做出判断时所依据的逻辑是:如果在原假设正确的前提下,检验统计量的样本观测值的出现属于小概率事件,那么可以认为原假设不可信,从而否定它,转而接受备择假设。


假设检验步骤


一个完整的假设检验过程,包括以下几个步骤:


(1)提出假设;

(2)构造适当的检验统计量,并根据样本计算统计量的具体数值;

(3)规定显著性水平,建立检验规则;

(4)做出判断。


假设检验的类型


(1)对陈述正确性的检验

在这种情况下,原假设通常是基于假定的陈述是正确的。然后建立备择假设,为拒绝提供统计证据,从而证明这个假定的陈述是错误的。


(2)对研究性假设的检验

在研究性假设检验的调查研究中,应该建立原假设和备择假设,并用备择假设来表示研究性假设,这样如果拒绝,将支持样本所得出的结论以及应该采取某些行动。


(3)对决策情况下的检验

在决策情况下的检验研究中,决策者必须从两种措施中挑选其中一种,无论是接受还是拒绝,都必须采取一定的措施。


统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


假设检验问题做出判断可依据两种规则


(1)P值规则

所谓P值,实际上是检验统计量超过(大于或小于)具体样本观测值的概率。如果P值小于所给定的显著性水平,则认为原假设不太可能成立;如果P值大于所给定的标准,则认为没有充分的证据否定原假设。


(2)临界值规则

假设检验中,还有另外一种做出结论的方法:根据所提出的显著性水平标准(它是概率密度曲线的尾部面积)查表得到相应的检验统计量的数值,称作临界值,直接用检验统计量的观测值与临界值作比较,观测值落在临界值所划定的尾部(称之为拒绝域)内,便拒绝原假设;观测值落在临界值所划定的尾部之外(称之为不能拒绝域)的范围内,则认为拒绝原假设的证据不足。这种做出检验结论的方法,我们称之为临界值规则。


假设检验中的两类错误


•第Ⅰ类错误 (type Ⅰ error)

又称弃真错误,当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率通常记为α 。


•第Ⅱ类错误(type Ⅱ error)

又称取伪错误,当原假设为假时没有拒绝原假设。犯第Ⅱ类错误的概率通常记为β。


统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


在统计实践中,进行假设检验时一般先控制第Ⅰ类错误发生的概率,并确定犯第Ⅰ类错误的概率最大值,称为检验的显著性水平。在样本容量n不变的条件下,犯两类错误的概率常常呈现反向的变化,要使α和β 都同时减小,除非增加样本的容量。因此,统计学家奈曼与皮尔逊提出了一个原则:即在控制犯第一类错误的概率情况下,尽量使犯第二类错误的概率小。


在实际问题中,我们往往把要否定的陈述作为原假设,而把拟采纳的陈述本身作为备择假设,只对犯第一类错误的概率加以限制,而不考虑犯第二类错误的概率。


假设检验基本方法


检验形式


(1)双侧检验


双侧检验属于决策中的假设检验。也就是说,不论是拒绝H0,还是接受H1 ,都必需采取相应的行动措施。

统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


(2)单侧检验


单侧检验又可分两种形式:


a、检验研究中的假设

将所研究的假设作为备择假设H1,将认为研究结果是无效的说法或理论作为原假设H0。或者说,把希望(想要)证明的假设作为备择假设。再做这类假设检验时应先确立备择假设H1。


b、检验某项声明的有效性

将所作出的说明(声明)作为原假设,对该说明的质疑作为备择假设,在做这类单侧检验时,应先确立原假设H0。除非我们有证据表明“声明”无效,否则就应认为该“声明”是有效的。

统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


单样本假设检验

统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


以均值为例进行如下分析分析,看适合哪种检验。

统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


双样本假设检验


统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


以均值差为例进行如下分析分析,看适合哪种检验。


统计学中的<a href='/map/jiashejianyan/' style='color:#000;font-size:inherit;'>假设检验</a>


以上就是我总结的假设检验的内容,希望能对你的知识梳理起到帮助。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询