京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源 | 接地气学堂
做数据分析的同学们都遇到过这个问题:从多维度分析问题,提出对业务有意义的建议。这个题目看起来很简单,可很多同学辛辛苦苦跑了一堆报表,结果只落得业务一堆抱怨:
好!冤!枉!
明明出了那么多组数据,为什么还被说“分析维度不够多?”今天我们系统解答一下。问题的本质是:业务口中的“多维度”,完全不是你想的那个“多维度”。
对数据分析师而言,多维度,往往指的是数据指标的拆分维度。举个简单的例子:3月份销售额3个亿。这就是一个指标,没有拆分维度。如果加了分类维度,就是下边的效果:
注意:比起只看总数,用多维度拆解数据,是能更精确的定位数据的。常见的方法有两种:一、添加过程指标;二、按业务管理方式添加分类维度。比如只看总销售金额,我们发现差3000万达标,可我们并不知道为什么不达标。这时候如果拆解细一点,比如:
1、添加分类维度:看到哪个业务线没做好(如下图)
2、添加过程指标:看到从用户意向到付费,哪个环节出了问题(如下图)
增加过程指标+分类维度,就能更精准的定位问题。甚至一些简单的结论已经呼之欲出了。正因如此,很多数据分析师把业务口中的“多维度”,直接理解成了“维度多”。一听到要做分析,振臂高呼“拆!拆!拆!”层层叠叠做了一大堆交叉表,把各个分类维度的数据都做了出来(如下图)。
然而,仅仅“多”,就足够了吗?
业务口中的“多维度”,完全不是这个意思。业务脑子里装的是不是数据库里的表结构,而是一个个具体的问题。当业务看到“3月份销售没有达标”脑子里想的多维度是这样的:
是不是看傻眼了。
你会发现,单纯的拆解数据根本无法回答上边的问题。是滴,一个都回答不了。甚至单靠看数据都没法回答这些问题。即使把问题定位到:“3月业绩不达标是因为A大区3个分公司的客户意向签约太少”,定位到这么细的程度,也不能回答上边的问题。因为到底意向太少,是因为对手发力了、产品没做好、活动没跟上、用户需求有变化……还是没解释清。具体的业务问题,一个都没有回答。自然业务看了一脸懵逼了。
从本质上看,真正的多维度分析,其实考的不是数据计算能力,而是策略能力。具体来说是三个方面:
注意,这三件事是有顺序的。先把数据论证方式列清楚,避免大家放空炮(数据不能论证的理由就闭嘴,是个非常好的议事规则)。之后先堵借口,找借口并不能解决问题,因此先把各种逃跑路线堵上。最后再集中想办法,想办法的时候,从大到小,从粗到细,先搞大问题。综上,这个事可以分六步做。
▌第一步,要先对业务明里、暗里提出的说法做分类。
对每一类问题,构建分析假设,把业务理由转化为数据逻辑,拿数据说话(如下图)。
▌第二步,优先排除借口。
让大家把精力集中在。往往借口产生于:宏观因素、外部因素、队友因素。所以在这里,关键是证伪。只要能推翻他们的逃跑借口就行。证伪最好用的办法就是举例法,同样是下雨,为什么别人就抗的住。同样是流量难搞,为啥别的业务线能持续增长?(如下图)。
举例法还有个好处,就是在反驳借口的同时,也指出了解决问题的出路。业务最讨厌光讲问题不讲方法的人,因为喷人人人都会,解决问题可就难了。给出具体的学习对象,可以极大的激发业务思考对策,从而达到双赢的效果。
▌第三步,解决白犀牛,剔除明显的重大影响。
比如监管政策、公司战略、重大外部环境等等因素,确实会对企业经营起到重大作用,并且这些因素是普通小员工只能接受,不能改变的。但是!这种重大因素表现在数据上,有严格的要求(如下图)。
因此如果有人想推脱给这些因素,要看:
以此敲警钟:不要事事都怪大环境不好。你丫走到哪里都是大环境不好,你是影响大环境的人呐!先排除这种大因素的影响(或干扰)再聚焦看我们能做什么事情。
▌第四步,解决黑天鹅,剔除明显突发事件。
如果发生的真是突发事件,很容易找到问题源头
因此先排除单次突发问题,找清楚一点原因以后,再追溯之前的情况,就容易说清楚。
▌第五步:按分工锁定问题点再谈细节。
解决了大问题以后,想讨论更细节的问题就得锁定部门,先定人再谈计划。之前已有分享,这里就不赘述了。
▌第六步:锁定细节问题。
请注意,即使聚焦到一个部门的一个行动,还是很难扯清楚:到底是什么业务上原因导致的问题。因为本身业务上的事就是各种因素相互交织很难扯清,比如:
可能做数据的同学本能反应是:能做ABtest呀。实际上大部分业务是没有时间、空间做ABtest 的,而且有些东西(比如选品、文案)影响维度太多,得做无数组ABtest才能测清楚。而且对已经发生的事,也没法再做ABtest了。所以想区分相互交织的因素,还得有更多辅助方法配合。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24