
大家好,我是小z~
最近,不止一次收到群里小伙伴的截图追问:
“这个图叫什么???”
“这个图真好看!!!怎么画啊?”
小z本没有干货,问的人多了,也便有了干货。
此图姓桑名基,平素不喜露面。奈何天生丽质,偶有露面,必引众人围观。
时人有云:“桑基桑基,高贵美丽!”
1
据小z不严谨的抽样提问统计,90%想学习桑基图的旁友,都是被她妖艳炫酷的外表所吸引。
而桑基图真正代表了什么?和类似图表相比的独特性是什么?却几乎无人问津。
害!人真的是视觉动物!
言归正传,我们来看看百科的官方解释:
桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"而闻名,此后便以其名字命名为"桑基图"。
Emmm,有点内个意思了,结合其他资料,做进一步的汇总提炼:
文字太苍白,下面我们用Python来绘制一个具体的实例~
2
动手之前,我们再次敲黑板,回顾桑基图组成要素的重点——节点、边和流量。
任何桑基图,无论展现形式如何夸张,色彩如何艳丽,动效如何炫酷,本质都逃不出上述3点。
只要我们定义好上述3个要素,Python的pyecharts库能够轻松实现桑基图的绘制。
这里我们用“当代青年熬夜原因分析”数据为例:
数据来源:这个数据是小z近两周卖炒粉时口头做的调研
很规整的性别、熬夜原因、人数三列数据。
不过,要用pyecharts来画图,得入乡随俗,按照它定的规则来规整数据源。
首先是节点,这一步需要把所有涉及到的节点去重规整在一起。也就是要把性别一列的“男”、“女”和熬夜原因一列的“打游戏”、“加班”、“看剧”以列表内嵌套字典的形式去重汇总:
接着,定义边和流量,数据从哪里流向哪里,流量(值)是多少,循环+字典依然可以轻松搞定:
source-target-value的字典格式,很清晰的描述了数据的流转情况。
这两块数据准备完毕,桑基图已经完成了80%,剩下的20%,只是固定格式的绘图代码:
from pyecharts.charts import Sankeyfrom pyecharts import options as optspic = ( Sankey() .add('', #图例名称 nodes, #传入节点数据 linkes, #传入边和流量数据 #设置透明度、弯曲度、颜色 linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"), #标签显示位置 label_opts=opts.LabelOpts(position="right"), #节点之前的距离 node_gap = 30, ) .set_global_opts(title_opts=opts.TitleOpts(title = '熬夜原因桑基图')))pic.render('test.html')
一个回车下去,看看成果:
果然,男打游戏女看剧,加班熬夜是儿戏。
如果想要垂直显示,只需要在add函数里面加一个orient="vertical"就好:
pic = ( Sankey() .add('', nodes, linkes, linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"), label_opts=opts.LabelOpts(position="top"), node_gap = 30, orient="vertical", #更改的是这里 ) .set_global_opts(title_opts=opts.TitleOpts(title = '熬夜原因细分桑基图')))pic.render('test2.html')
OK!不过,还有同学意犹未尽,这个是涉及到两层的流转,那如果三层,需要怎么画呢?
不慌,先导入(狗粮)数据:
这是某宠物品牌,3月份主要产品购买路径(第一次和第二次)的数据,先是品类,其次是第一次购买的产品类型,接着是第二次购买的产品类型,最后一列对应人数。
注:这里第一次购买的产品前面加了“1-”,第二次购买加了“2-”的区分标识。
画图必备的nodes节点实现很简单,所有节点(品类、第一次购买、第二次购买)做去重汇总,对上面生成nodes代码稍作调整就可以:
而linkes只接受source-traget-value的格式,得先对源数据进行格式调整,分别形成“品类-第一次购买-人数”,“第一次购买-第二次购买-人数”的样式,再统一汇总:
规整汇总好之后,只需要复用上面的linkes代码:
画图代码几乎没变,只是改了个标题:
pic = ( Sankey() .add('', nodes, linkes, linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = 'source'), label_opts=opts.LabelOpts(position = 'top'), node_gap = 30, ) .set_global_opts(title_opts=opts.TitleOpts(title = '客户购买路径流转图')))pic.render('test3.html')
大功告成,So easy!无论是多少层数据的流转,只要定义好nodes和linkes,就能以不变应万变。
最后,通过上面的桑基图,我们能够非常直观的洞察到客户购买流转规律:
原本死板的数据,在桑基的装扮之下,变得楚楚动人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09