大家好,我是小z~
最近,不止一次收到群里小伙伴的截图追问:
“这个图叫什么???”
“这个图真好看!!!怎么画啊?”
小z本没有干货,问的人多了,也便有了干货。
此图姓桑名基,平素不喜露面。奈何天生丽质,偶有露面,必引众人围观。
时人有云:“桑基桑基,高贵美丽!”
1
据小z不严谨的抽样提问统计,90%想学习桑基图的旁友,都是被她妖艳炫酷的外表所吸引。
而桑基图真正代表了什么?和类似图表相比的独特性是什么?却几乎无人问津。
害!人真的是视觉动物!
言归正传,我们来看看百科的官方解释:
桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"而闻名,此后便以其名字命名为"桑基图"。
Emmm,有点内个意思了,结合其他资料,做进一步的汇总提炼:
文字太苍白,下面我们用Python来绘制一个具体的实例~
2
动手之前,我们再次敲黑板,回顾桑基图组成要素的重点——节点、边和流量。
任何桑基图,无论展现形式如何夸张,色彩如何艳丽,动效如何炫酷,本质都逃不出上述3点。
只要我们定义好上述3个要素,Python的pyecharts库能够轻松实现桑基图的绘制。
这里我们用“当代青年熬夜原因分析”数据为例:
数据来源:这个数据是小z近两周卖炒粉时口头做的调研
很规整的性别、熬夜原因、人数三列数据。
不过,要用pyecharts来画图,得入乡随俗,按照它定的规则来规整数据源。
首先是节点,这一步需要把所有涉及到的节点去重规整在一起。也就是要把性别一列的“男”、“女”和熬夜原因一列的“打游戏”、“加班”、“看剧”以列表内嵌套字典的形式去重汇总:
接着,定义边和流量,数据从哪里流向哪里,流量(值)是多少,循环+字典依然可以轻松搞定:
source-target-value的字典格式,很清晰的描述了数据的流转情况。
这两块数据准备完毕,桑基图已经完成了80%,剩下的20%,只是固定格式的绘图代码:
from pyecharts.charts import Sankeyfrom pyecharts import options as optspic = ( Sankey() .add('', #图例名称 nodes, #传入节点数据 linkes, #传入边和流量数据 #设置透明度、弯曲度、颜色 linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"), #标签显示位置 label_opts=opts.LabelOpts(position="right"), #节点之前的距离 node_gap = 30, ) .set_global_opts(title_opts=opts.TitleOpts(title = '熬夜原因桑基图')))pic.render('test.html')
一个回车下去,看看成果:
果然,男打游戏女看剧,加班熬夜是儿戏。
如果想要垂直显示,只需要在add函数里面加一个orient="vertical"就好:
pic = ( Sankey() .add('', nodes, linkes, linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"), label_opts=opts.LabelOpts(position="top"), node_gap = 30, orient="vertical", #更改的是这里 ) .set_global_opts(title_opts=opts.TitleOpts(title = '熬夜原因细分桑基图')))pic.render('test2.html')
OK!不过,还有同学意犹未尽,这个是涉及到两层的流转,那如果三层,需要怎么画呢?
不慌,先导入(狗粮)数据:
这是某宠物品牌,3月份主要产品购买路径(第一次和第二次)的数据,先是品类,其次是第一次购买的产品类型,接着是第二次购买的产品类型,最后一列对应人数。
注:这里第一次购买的产品前面加了“1-”,第二次购买加了“2-”的区分标识。
画图必备的nodes节点实现很简单,所有节点(品类、第一次购买、第二次购买)做去重汇总,对上面生成nodes代码稍作调整就可以:
而linkes只接受source-traget-value的格式,得先对源数据进行格式调整,分别形成“品类-第一次购买-人数”,“第一次购买-第二次购买-人数”的样式,再统一汇总:
规整汇总好之后,只需要复用上面的linkes代码:
画图代码几乎没变,只是改了个标题:
pic = ( Sankey() .add('', nodes, linkes, linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = 'source'), label_opts=opts.LabelOpts(position = 'top'), node_gap = 30, ) .set_global_opts(title_opts=opts.TitleOpts(title = '客户购买路径流转图')))pic.render('test3.html')
大功告成,So easy!无论是多少层数据的流转,只要定义好nodes和linkes,就能以不变应万变。
最后,通过上面的桑基图,我们能够非常直观的洞察到客户购买流转规律:
原本死板的数据,在桑基的装扮之下,变得楚楚动人。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16