R语言dplyr包主要用于数据清洗和整理,主要功能有:行选择、列选择、统计汇总、窗口函数、数据框交集等是非常高效、友好的数据处理包,学清楚了,基本上数据能随意玩弄,对的,随意玩弄,简直大大提高数据处理及分析效率。我以为,该包是数据分析必学包之一。学习过程需要大量试验,领悟其中设计的精妙之处。
作者:小伍哥
来源:AI入门学习
#包安装与加载
install.packages("dplyr")
library(dplyr)
#调用mtcars数据&数据集介绍
data(mtcars)
str(mtcars)
本文案例使用数据集 mtcars 具体结构如下,直接加载即可共11个字段,32条数据,每个字段的含义如下:mpg-百公里油耗;cyl-气缸数;disp-排量;hp-马力;drat-轴距;wt-重量; qsec-百公里时间 ;vs-发动机类型
##############################################################
按行筛选: filter()
按给定的逻辑判断筛选出符合要求的子数据集, 类似于 subset() 函数
filter(mtcars, mpg>=22)
filter(mtcars, cyl == 4 | gear == 3)
filter(mtcars, cyl == 4 & gear == 3)
注意: 表示 AND 时要使用 & 而避免 &&
##############################################################
按列筛选:select
select()用列名作参数来选择子数据集。dplyr包中提供了些特殊功能的函数与select函数结合使用,用于筛选变量,包括starts_with,ends_with,contains,matches,one_of,num_range和everything等。用于重命名时,select()只保留参数中给定的列,rename()保留所有的列,只对给定的列重新命名。原数据集行名称会被过滤掉。
data(iris)
iris = tbl_df(iris)
#选取变量名前缀包含Petal的列
select(iris, starts_with("Petal"))
#选取变量名前缀不包含Petal的列
select(iris, -starts_with("Petal"))
#选取变量名后缀包含Width的列
select(iris, ends_with("Width"))
#选取变量名后缀不包含Width的列
select(iris, -ends_with("Width"))
#选取变量名中包含etal的列
select(iris, contains("etal"))
#选取变量名中不包含etal的列
select(iris, -contains("etal"))
#正则表达式匹配,返回变量名中包含t的列
select(iris, matches(".t."))
#正则表达式匹配,返回变量名中不包含t的列
select(iris, -matches(".t."))
#直接选取列
select(iris, Petal.Length, Petal.Width)
#返回除Petal.Length和Petal.Width之外的所有列
select(iris, -Petal.Length, -Petal.Width)
#使用冒号连接列名,选择多个列
select(iris, Sepal.Length:Petal.Width)
#选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用one_of函数
vars <- c("Petal.Length", "Petal.Width")
select(iris, one_of(vars))
#返回指定字符向量之外的列
select(iris, -one_of(vars))
#返回所有列,一般调整数据集中变量顺序时使用
select(iris, everything())
#调整列顺序,把Species列放到最前面
select(iris, Species, everything())
##############################################################
神奇变形函数:mutate()transmute()
mutate()和transmute()函数对已有列进行数据运算并添加为新列,类似于transform() 函数,不同的是可以在同一语句中对刚增添加的列进行操作,mutate()返回的结果集会保留原有变量,transmute()只返回扩展的新变量,原数据集行名称会被过滤掉
1、mutate变量变形
1.1 单个变量操作:mutate可以对数据框中已有的变量进行操作或者增加变量,值得称赞的是,一段mutate的代码中,靠后的变量操作可以操作前期新添加或改变的变量,这是transform所不具备的特性。
1.1.1新增列
mtcars%>% mutate(cyl2 = cyl * 2,cyl4 = cyl2 * 2)
看了这篇文章之后,大家对R语言dplyr包是不是更加了解了呢,希望为大家学习R语言助一臂之力。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20