上一篇文章中,我们理清楚了python的time库以及datetime库中各种时间对象的处理方法,以及相互之间的转化方法。
我们发现,time库以及datetime库中,确实存在名字相同,但是调用方法与所属类完全不一样的情况,这也是造成使用过程中各种混淆的原因。
今天我们把Pandas库中处理时间的各种函数与方法也加进来讨论,当然,由于Pandas中处理时间的方法和类太多太强大,我们仅仅是对其中探讨Pandas其中部分,特别是其中与time库、datetime库有关联且又容易混淆的相关知识。
(一) 此Timestamp非彼Timestamp
相信在读过前面一篇文章的同学,对time库中的unix时间戳还有印象,但是Pandas中的Timestamp对象和unix时间戳格式完全不同。
Pandas中的Timestamp对象可以说是Pandas中时间序列对象的“细胞”,如果我们有datetime64[ns]型Series对象如下:
你会发现当你提取Series第一个元素出来,返回来的就是一个Timestamp对象。当然,我们也可以自己创建一个Timestamp对象:
从上面的代码你会发现,你可以将unix时间戳、字符串型日期、datetime库中datetime.datetime通过pd.Timestamp()方法直接转化为Timestamp对象。
反过来呢?如果想将把Timestamp对象转化为unix时间戳,可以使用pd.Timestamp.timestamp()方法:
(二) 生成时间序列
Pandas作为处理多维数组的“神器”,本篇文章讲的当然是处理时间序列的方法。其中,Pandas中生成时间序列的方法不少,最常用的方法是pd.date_range(),我们看一下其使用方法:
l pd.date_range(start, end, freq) 生成一个时间段
n start:开始时间,参数可以是datetime库中的datetime对象,也可以是字符串。
n end:结束时间,参数可以是datetime库中的datetime对象,也可以是字符串。
n freq:时间频率,'Y'表示年,'M’表示月,'D’表示天,'H’表示小时,'Min’表示分钟
注意,这里开始时间和结束时间的参数指向的对象,是可以是datetime.datetime对象:
当然,这里的开始时间除了可以使用datetime.datetime实例以外(这里注意,是使用的datetime库中的类,而不是Pandas库),也可以用字符串来表示。
以start_time为2019年7月17日为例,start_time也可以是字符串'20190717'、'2019-07-17'、'2019/07/17'...
从上面可以看到,pd.date_range()方法生成的是长度为200、数据类型为datetime的DatetimeIndex对象,时间频率是天。
也就是说,2019年7月17日到2020年2月1日,算上始末的日期,一共200天。这是因为默认的频率是每天,freq='D'。 也可以通过改变时间频率,详情参考上面的使用方法添加修改freq参数即可。
如果我们想要2019年7月17日为起始,按照每天的时间频率,生成长度为200的DataIndex对象,可以这样写:
相应地,如果想要以2020年2月1日为结束日,按照每天的时间频率,生成长度为200的DataIndex对象,可以这样写:
(三) .to_datetime()方法
当然,上面的方法生成的是DatetimeIindex对象,可以通过pd.Series()方法转化为Series对象:
但是对于不规范的日期字符串Series,需要使用pd.to_datetime()方法来对其进行转换,比如:
(四) DateOffset类
datetime库中有timedelta类作为日期的增减,Pandas中也有专门的DateOffset类作为时间间隔对象,可以直接作用在上面的datetime型Series对象中。
其使用方法和datetime.timedelta类相似,但是要注意的是里面的参数名最后都加了's'。
datetime型Series对象可以直接使用DataOfffset对象进行日期加减:
也可以作用在DatetimeIndex对象中:
(五) 时间序列日期格式化
要对datetime型的Series对象进行日期格式转换,可以通过Series实例的方法.dt.strftime(),其格式化字符串依然可以参照datetime库中的格式化字符串对照表:
要对datetime型的Series对象进行日期格式转换,可以通过Series实例的方法.dt.strftime(),其格式化字符串依然可以参照文章开头的datetime库中的格式化字符串对照表:
但是如果留心的话可以发现,转化之后的数据类型,已经从datetime型变成object类,也就是字符串。
如果把字符串时间date_03重新转化为datetime型Series,用上面提到的pd.to_datetime()方法即可:
(六) 结后语
time库和datetime库以及Pandas中各种对象处理时间的方法,虽然错综复杂又相互关联,但是其实在使用方面有所侧重和不同。
time库以及datetime库的对象,一般用在程序设计的中涉及到时间的问题,比如爬虫的时候在获得的不规则时间时碰到的格式转换问题,会使用很多。
Pandas中各种与时间相关的类非常多,方法非常丰富,涉及到时间处理的各个方面,主要用作序列数据的处理方面,这和time库与datetime库对单独某些日期数据处理不同。
就数据分析工作而言,对时间序列数据处理的时候Pandas用得非常多,以至于很多人几乎都忘记time库与datetime库的存在。总体而言,对于数据分析初学者而言,可以把Pandas作为重点学习方面,但是time库和datetime库作为Python标准库,其时间类的基本使用方法的学习是必不可少的。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16