这篇文章来探索下多类别条形图比如各学校包含语文、数学、英语三科成绩的条形图怎样绘制。在绘图之前,先来复习一下条形图函数中主要参数的含义:
小例子辅助理解:
x = [0.7, 1.5, 2, 3] height = [3, 10, 12, 7] plt.bar(x, height, width=0.3, bottom=[3, 0, 0, 1] ) plt.show()
参照代码和图形再理解下各个参数的作用。ok,万事俱备,开始绘图!
先看一下原数据data1长什么样子再敲代码:
plt.figure(figsize=(16,6)) x_s = np.array(list(range(0,20,2))) #设置语文成绩的条形所在位置 plt.bar(x_s,data1.loc[:,"语文"].iloc[:10],width=0.5) #绘制语文成绩的条形图 x_y = np.array(list(range(0,20,2)))+0.5 #设置数学成绩的条形所在位置 plt.bar(x_y,data1.loc[:,"数学"].iloc[:10],width=0.5) #绘制数学成绩的条形图 x_y = np.array(list(range(0,20,2)))+1 #设置英语成绩的条形所在位置 plt.bar(x_y,data1.loc[:,"英语"].iloc[:10],width=0.5) #绘制英语成绩的条形图 plt.title("成绩条形图",fontsize = 14) plt.ylabel("成绩",fontsize = 14) plt.xticks(x_s+0.5,data1.iloc[:,0].iloc[:10],fontsize = 12) #x轴刻度为各学校名称,为了刻度正好在三个条形的正中间,设置(x_s+0.5) plt.legend(["语文","数学","英语"]);
坐标轴和rc参数设置的讲解中有提到过,在同一块画布上是可以重复绘图的,其实在一幅条形图中绘制多个类别的条形图应用的就是这个原理。需要注意的是不要让后边绘制的图形覆盖前边绘制的图形,所以需要提前计算好每个条形应该画在哪个地方。
通过代码可以看到都进行了哪些设置,每个条形的宽度都是0.5,所以在绘制好第一个学科的条形图后,排在第二个位置进行绘制的条形图所有的条所在x轴的位置都在第一个学科条形位置的基础上增加了0.5,第三个学科的条形又在第二个学科条形位置的基础上再增加0.5的距离,这样,每个学校的三个学科可以挨着展示出来又不会发生条形重叠的情况。
这里需要注意的另一个问题就是每个学校刻度之间要流出足够的位置放置三个条形。每个条形的宽度都是0.5,一共需要1.5个位置,所以在设置刻度的时候,每个刻度之间的间隔(range(0,20,2)),一共10个刻度,对应选取的10所学校,刻度间距为2,超过所需的1.5。
最终的效果图:
图是画出来了,但是画的过程中需要心算一下各种位置,除了各个条形的位置还有刻度的位置,着实有点麻烦,那么有没有其他更简便一点的方法呢?
先来和我们熟悉的matplotlib绘图做对比,用matplotlib绘图时先选择绘图函数,然后把原数据作为参数传入函数中,而dataframe直接绘图的时候,类似调用了dataframe的方法,在通过参数选择进行哪种图形的绘制。
干说没实感,来段代码感受下:
#通过参数设置生成图形的类型 data2.iloc[:10].plot(x = '学校',y = ['语文','数学','英语'],kind = "bar" ,figsize=(16,6),width=0.7,rot = 0,title = "各学科成绩条形图");
一行代码搞定,先来看下效果图:
是不是看起来和上边matplotlib绘制的图差不多,代码却简洁了很多。先看下原dataframe长什么样子:
接着具体研究下都是哪些参数在影响绘图:
这里写出两种方法实现相同的操作,在实际的工作中,按照需求自行选择即可。
有时候,除了查看单个类别的情况,还需要同时查看总体的情况,这就是堆积条形图擅长的领域了。绘制堆积条形图和绘制普通条形图用的都是plt.bar()函数,也是通过参数设置实现堆积条形图的绘制。
还是对参数设置不太熟的孩子可以回到文章开头回忆下重要参数的作用,这里实现用语文、数学、英语三科成绩的堆积条形图:
plt.figure(figsize=(16,6)) plt.bar(range(21),data1.loc[:,"语文"],width=0.9,label = "语文") plt.bar(range(21),data1.loc[:,"数学"],bottom=np.array(data1.loc[:,"语文"]),width=0.9,label ="数学") plt.bar(range(21),data1.loc[:,"英语"],bottom=np.array(data1.loc[:,"语文"]+data1.loc[:,"数学"]) ,width=0.9,label ="英语") totle_score = np.array(data1.loc[:,"语文"]+data1.loc[:,"数学"]+data1.loc[:,"英语"]).astype("int") for i in range(21): plt.text(i-0.25,totle_score[i]+1,totle_score[i]) #为条形图中的每个条添加标签 plt.title("各学校成绩堆积图",fontsize = 14) plt.ylabel("成绩",fontsize = 14) plt.xticks(range(21),data1.iloc[:,0],rotation=30,fontsize = 12)#x轴刻度为各学校名称 plt.legend() #显示图例;
原理和前边画三科成绩条形图一样,都是在同一块画布上重复绘图,注意绘图的逻辑即可。这里是先画一个学科成绩的纵向条形图,通过bottom参数控制第二个学科成绩绘图时在y轴方向的起始值,也就是在第一科学科成绩条形的顶端接着画第二科学科成绩的条,然后在第二科成绩条形的顶端继续画第三个学科成绩的条形,这样形成的就是堆积条形图。
当然还有一些细节需要注意,比如三个学科条形的宽度得设置成一样的尺寸,避免影响美观。
细心的孩子可能已经发现了一点新鲜的设置:多了一个函数plt.text(),这个函数的作用是在条形的顶端添加了该条形的标签,即三科的总成绩。因为要对每个条形增加一个标签,所以运用了循环,将总分作为标签添加到了图形中。
通过plt.text()函数可以在整幅图的任意位置添加需要的文本进去。函数的第一个参数控制文本在x轴方向的位置,第二个参数控制文本在y轴方向的位置,第三个参数为添加的文本信息。
啰里啰唆说了这么多,来看下堆积条形图的效果:
和常见的堆积条形图没什么不一样对吧,其实条形图依然又值得深挖的地方,还有很多有意思的设置可以尝试呢。来个预告,计划在下一篇文章离探索一下发散型条形图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31