这篇文章来探索下多类别条形图比如各学校包含语文、数学、英语三科成绩的条形图怎样绘制。在绘图之前,先来复习一下条形图函数中主要参数的含义:
小例子辅助理解:
x = [0.7, 1.5, 2, 3] height = [3, 10, 12, 7] plt.bar(x, height, width=0.3, bottom=[3, 0, 0, 1] ) plt.show()
参照代码和图形再理解下各个参数的作用。ok,万事俱备,开始绘图!
先看一下原数据data1长什么样子再敲代码:
plt.figure(figsize=(16,6)) x_s = np.array(list(range(0,20,2))) #设置语文成绩的条形所在位置 plt.bar(x_s,data1.loc[:,"语文"].iloc[:10],width=0.5) #绘制语文成绩的条形图 x_y = np.array(list(range(0,20,2)))+0.5 #设置数学成绩的条形所在位置 plt.bar(x_y,data1.loc[:,"数学"].iloc[:10],width=0.5) #绘制数学成绩的条形图 x_y = np.array(list(range(0,20,2)))+1 #设置英语成绩的条形所在位置 plt.bar(x_y,data1.loc[:,"英语"].iloc[:10],width=0.5) #绘制英语成绩的条形图 plt.title("成绩条形图",fontsize = 14) plt.ylabel("成绩",fontsize = 14) plt.xticks(x_s+0.5,data1.iloc[:,0].iloc[:10],fontsize = 12) #x轴刻度为各学校名称,为了刻度正好在三个条形的正中间,设置(x_s+0.5) plt.legend(["语文","数学","英语"]);
坐标轴和rc参数设置的讲解中有提到过,在同一块画布上是可以重复绘图的,其实在一幅条形图中绘制多个类别的条形图应用的就是这个原理。需要注意的是不要让后边绘制的图形覆盖前边绘制的图形,所以需要提前计算好每个条形应该画在哪个地方。
通过代码可以看到都进行了哪些设置,每个条形的宽度都是0.5,所以在绘制好第一个学科的条形图后,排在第二个位置进行绘制的条形图所有的条所在x轴的位置都在第一个学科条形位置的基础上增加了0.5,第三个学科的条形又在第二个学科条形位置的基础上再增加0.5的距离,这样,每个学校的三个学科可以挨着展示出来又不会发生条形重叠的情况。
这里需要注意的另一个问题就是每个学校刻度之间要流出足够的位置放置三个条形。每个条形的宽度都是0.5,一共需要1.5个位置,所以在设置刻度的时候,每个刻度之间的间隔(range(0,20,2)),一共10个刻度,对应选取的10所学校,刻度间距为2,超过所需的1.5。
最终的效果图:
图是画出来了,但是画的过程中需要心算一下各种位置,除了各个条形的位置还有刻度的位置,着实有点麻烦,那么有没有其他更简便一点的方法呢?
先来和我们熟悉的matplotlib绘图做对比,用matplotlib绘图时先选择绘图函数,然后把原数据作为参数传入函数中,而dataframe直接绘图的时候,类似调用了dataframe的方法,在通过参数选择进行哪种图形的绘制。
干说没实感,来段代码感受下:
#通过参数设置生成图形的类型 data2.iloc[:10].plot(x = '学校',y = ['语文','数学','英语'],kind = "bar" ,figsize=(16,6),width=0.7,rot = 0,title = "各学科成绩条形图");
一行代码搞定,先来看下效果图:
是不是看起来和上边matplotlib绘制的图差不多,代码却简洁了很多。先看下原dataframe长什么样子:
接着具体研究下都是哪些参数在影响绘图:
这里写出两种方法实现相同的操作,在实际的工作中,按照需求自行选择即可。
有时候,除了查看单个类别的情况,还需要同时查看总体的情况,这就是堆积条形图擅长的领域了。绘制堆积条形图和绘制普通条形图用的都是plt.bar()函数,也是通过参数设置实现堆积条形图的绘制。
还是对参数设置不太熟的孩子可以回到文章开头回忆下重要参数的作用,这里实现用语文、数学、英语三科成绩的堆积条形图:
plt.figure(figsize=(16,6)) plt.bar(range(21),data1.loc[:,"语文"],width=0.9,label = "语文") plt.bar(range(21),data1.loc[:,"数学"],bottom=np.array(data1.loc[:,"语文"]),width=0.9,label ="数学") plt.bar(range(21),data1.loc[:,"英语"],bottom=np.array(data1.loc[:,"语文"]+data1.loc[:,"数学"]) ,width=0.9,label ="英语") totle_score = np.array(data1.loc[:,"语文"]+data1.loc[:,"数学"]+data1.loc[:,"英语"]).astype("int") for i in range(21): plt.text(i-0.25,totle_score[i]+1,totle_score[i]) #为条形图中的每个条添加标签 plt.title("各学校成绩堆积图",fontsize = 14) plt.ylabel("成绩",fontsize = 14) plt.xticks(range(21),data1.iloc[:,0],rotation=30,fontsize = 12)#x轴刻度为各学校名称 plt.legend() #显示图例;
原理和前边画三科成绩条形图一样,都是在同一块画布上重复绘图,注意绘图的逻辑即可。这里是先画一个学科成绩的纵向条形图,通过bottom参数控制第二个学科成绩绘图时在y轴方向的起始值,也就是在第一科学科成绩条形的顶端接着画第二科学科成绩的条,然后在第二科成绩条形的顶端继续画第三个学科成绩的条形,这样形成的就是堆积条形图。
当然还有一些细节需要注意,比如三个学科条形的宽度得设置成一样的尺寸,避免影响美观。
细心的孩子可能已经发现了一点新鲜的设置:多了一个函数plt.text(),这个函数的作用是在条形的顶端添加了该条形的标签,即三科的总成绩。因为要对每个条形增加一个标签,所以运用了循环,将总分作为标签添加到了图形中。
通过plt.text()函数可以在整幅图的任意位置添加需要的文本进去。函数的第一个参数控制文本在x轴方向的位置,第二个参数控制文本在y轴方向的位置,第三个参数为添加的文本信息。
啰里啰唆说了这么多,来看下堆积条形图的效果:
和常见的堆积条形图没什么不一样对吧,其实条形图依然又值得深挖的地方,还有很多有意思的设置可以尝试呢。来个预告,计划在下一篇文章离探索一下发散型条形图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06