人们经常用pandas处理表格型数据,时常需要读入excel表格数据,很多人一般都是直接这么用:pd.read_excel(“文件路径文件名”),再多一点的设置可能是转义一下路径中的斜杠,一旦原始的excel表不是很规整,这样简单读入势必报错!
其实这个函数有很多参数可以设置,为了应对各式excel表满足各种读入的需求,我们来详细了解下pd.excel()中的主要参数。
首先,认识一下pd.read_excel(),函数的官方文档是这么说的:将Excel文件读取到pandas DataFrame中,支持本地文件系统或URL的’xls’和’xlsx’文件扩展名,带有这两种扩展名的文件,函数都可以处理;
然后它的函数完整版长这个样子:
没想到吧,它它它…它居然有二十多个参数,是不是有点出乎意料,接下来认识下这些参数都是做什么用的吧!
io参数可以接受的有:str,Excel文件,xlrd.Book,路径对象或类似文件的对象,其中最常用的是str,一般是文件路径+文件名,需要注意的是文件名字不要漏掉后缀,即文件扩展名,表明文件类型的那个!有时候需要对路径中的”\”进行转义,io参数没有默认值,必须传入。
举个例子:
输出结果:
sheet_name参数可以接收的有:str,int,list或None,默认0
其中,字符串用于工作表名称。 整数用于零索引工作表位置。 字符串/整数列表用于请求多个工作表。设置None获取所有工作表。
有时候一个excel工作簿中包含有很多个sheet工作表,如果不指定默认为0,数据读入的时候默认读入的是第一个位置的sheet。
常用的是指定sheet位置或者名字,还是来个例子:
输出结果和不指定sheet时的结果是一样的,因为默认的就是第0个sheet:
指定另一个位置的sheet:
输出结果:
输出结果,能够看到结果和sheet_name=1的结果是一样的:
可以看一下原表中sheet的名字就能理解名字为data2的sheet正好在第1个位置(名字为data1的sheet在第0个位置)
通过名字读取另一个sheet就不在这里赘述了,我们看看这个参数还有两种可以接收的对象,挨个看下是什么样的效果吧。
sheet_name参数的其他设置
输出结果:
输出结果:
能够看到比上边只读入两个sheet工作表的命令相比,这里多了data3这个工作表!
综上,sheet_name空值既可以通过sheet位置也可以通过sheet名字来指定读入哪个sheet的数据。
这个参数是用来指定哪一行作为列名的,默认是第0行,接收的参数可以是整数(指定第几行作为列名),可以是有整数组成的列表(指定哪几行作为列名,是的,列名可以有多行,是不是有点突破认知?),也可以是None(没有列名)。
比如这种数据就需要在读入数据的时候指定哪一行作为列名:
开头有空行,直接读取试一下:
是这种效果(截取部分数据图像):
header参数可以有效的解决这个问题,可以看到行标签为1的数据才是我们需要的列名,所以在读取数据的时候进行设置就可以了:
输出结果:
这样就符合要求了!
对header参数的其他设置
为了满足好奇心,我们也实验一下其他的参数,比如整数组成的列表,提前预告,读出来不一定符合业务逻辑要求哦。
输出结果:
能看到的确有两行列名!
如果不要列名是什么样子呢?
输出结果:
不指定列名后的效果就是这样的了!
官方文档说这个参数接收 array-like, 默认 None,表示要使用的列名列表,如果不需要列名,请设置header = None,如果header = None和names参数都设置的话,依然会显示names指定的列名。
还是通过实例来感受下参数的作用吧,为了节省篇幅,代码放入截图中:
如果原始表格中的列名不符合需求,比如上图中很明显是进行聚合后系统生成的列名,在读入数据的时候可以根据需求自定义列名,需要注意的是指定的列名和原数据中的列名是依据位置一一对应的,顺序不要乱了!
官方文档说这个参数接收整数,或者由整数组成的列表,默认是None。
这个参数的作用是指定用哪一列做为行索引。如果传给参数的是整数n,则表示指定第n列作为行索引,如果传入的是列表,则表示需要指定多列作为行索引。上一篇文章中介绍了header参数,是指定由哪一行作为列名,也是传入整数或者整数组成的列表,可以对比记忆。
来个例子感受一下:
上边的例子分别采用了默认值None,整数0和列表[0,1]对index_col进行了设置,用法和效果一目了然。
看下官方文档是怎么说的:该参数接收整数,字符或者类似列表的序列,默认值是None,返回的是列的子集,直白点解释就是在读入表格的时候不是所有的列都会被读入,可以通过usecols参数来设置要把哪些列读取进来。
温馨提示:如果设置了names参数,注意设置的列名个数要和读取的列数一致
来个直观的例子感受下:
结合对参数的文字说明看例子,还是蛮清楚明白的。
来自官方文档的解释:接收布尔值,当取值为True的时候,如果解析的数据仅包含一列,则返回Series。默认值是False,即只有一列也返回Dataframe。
举例说明:
如果需要读进来一个Series,可以通过squeeze参数实现。
惯例还是官方文档的解释:输入表示数据类型的名称字符或者字典,如果输入的是字符表示整个表格的数据都转换成指定的数据类型,如果输入的是字典,那么每个字段可以指定不同的数据类型。
来个例子帮助理解:
由于整个表格中既有文本又有数值,如果要设置成统一的数据类型只能设置成字符型了;针对每一列设置不同的数据类型,效果还是很明显的。
篇幅限制,对pd.read_excel()函数参数的介绍先到这里,剩下的参数在后续的文章中接续介绍哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30