首先按照惯例先来认识下直方图是谁,以下是从维基百科搬运过来的直方图的定义:
在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量,以长条图(bar)的形式具体表现。因为直方图的长度及宽度很适合用来表现数量上的变化,所以较容易解读差异小的数值。
直方图也是用条形进行标注的,而条形图和直方图犹如孪生兄弟般让很多人都傻傻分不清,那么我们就先来好好区分一下这两种图形吧:
单纯文字不够直观的话,我们来个图感受下:
假设我们有一组数据,是一个学校200位同学的身高数据,如果想要知道该校学生身高的分布,那么直方图再合适不过了。
这里我用随机数生成了200个值在150到180之间的数表示身高信息:
data = np.random.randint(150,180,200) data
输出的结果:
array([162, 166, 158, 166, 165, 170, 157, 156, 164, 161, 154, 176, 166, 176, 153, 169, 164, 153, 171, 175, 171, 173, 155, 165, 168, 160, 162, 150, 151, 169, 166, 152, 174, 176, 160, 155, 158, 152, 159, 179, 179, 168, 178, 166, 174, 171, 167, 166, 165, 163, 164, 153, 153, 153, 162, 167, 169, 155, 155, 175, 161, 151, 173, 154, 151, 151, 166, 168, 167, 173, 166, 164, 175, 172, 163, 175, 154, 169, 160, 174, 163, 167, 156, 154, 157, 169, 160, 176, 150, 154, 158, 167, 164, 153, 152, 165, 165, 160, 167, 161, 164, 177, 177, 159, 161, 171, 169, 150, 165, 156, 156, 155, 165, 164, 179, 164, 179, 155, 172, 151, 178, 171, 164, 165, 161, 166, 170, 175, 163, 163, 179, 175, 173, 150, 171, 150, 178, 175, 152, 176, 168, 150, 172, 166, 176, 170, 174, 174, 152, 158, 171, 165, 167, 152, 163, 167, 164, 151, 174, 169, 169, 166, 167, 168, 179, 160, 179, 156, 168, 168, 172, 175, 160, 165, 160, 161, 164, 179, 158, 176, 175, 154, 167, 159, 153, 169, 151, 158, 163, 169, 155, 165, 178, 151, 168, 164, 169, 177, 150, 169])
以上就是200位同学的身高信息了,存储在一个数组中。
如果是常见的查看分布,直方图很容易绘制,这里我们通过这组数据探索下直方图函数中各个参数的作用,以更游刃有余的绘制符合需求的直方图。
bins参数指的是要将数据分成几组,它接收的参数可以是整数,也可以是序列,还可以是字符串,常用的是整数和序列。
通过代码来看一下区别:
fig = plt.figure(figsize=(16,4)) pic1 = fig.add_subplot(131) plt.hist(data) plt.title("bins默认10") pic2 = fig.add_subplot(132) plt.hist(data,bins = 15) plt.title("bins = 15") pic3 = fig.add_subplot(133) plt.hist(data,bins = [150,153,156,159,162,165,168,171,174,179]) plt.title("bins取值为序列");
能够看出即使是同一个数据集,分组的情况不同,呈现出来的分布也是有区别的,所以如何分组分成几组也是有学问的。
如果传给参数的是序列,则表示将每个分组的临界值都标识出来,缺点是比较麻烦,优点是很灵活,可以自主决定每个组的组距,每个组的组距都可以是不同的,如果分5组记得需要的临界值是6个,参数序列中需要有6个数值。
一般绘制直方图,都是对整个数据集绘制,有时候可能会有这样的需求,比如我想看该校中身高在155cm到175cm之间的身高分布,那么就需要将整个数据集中符合要求的身高挑选出来绘制直方图,实际上不用这么麻烦,用range参数就可以解决,这个参数就是指定绘图时使用数据的范围的,它接收的是一个元组,元组中放入两个数值表示所取数据的范围。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('range默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,range=(155,175)) #设置范围从155-175 plt.title('range=(155,175)');
能够看到x轴的数值范围发生了变化,整个直方图的形状也发生了变化。
这个参数的意思其实很直观,参数名字直译成中文就是密度的意思。普通的直方图y轴表示的都是频数,而通过density参数可以将y轴转化成密度刻度,这个参数接收布尔值,默认为None。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) #y轴表示计数 plt.title('density默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10, density=True) # density=True 将原本y轴的计数转换成概率密度的计数,直方图下面积为1 plt.title('density=True');
虽然两个图的形状是完全一模一样的,但是细看就能发现y轴的数值不一样,具体的参数作用已经以备注的形式标注到代码中了哦。
这里涉及到了另一个参数normed,这个参数已经被弃用了,它的作用和density一样,只用density就可以了,
大家对这个参数应该不陌生,它经常出现,表示权重。没错在这里也是表示设置权重。它接收的是一个序列,序列中是数值,数值的数量和原数据集中元素的个数一致,也就是每个数值都有自己单独的权重,我用随机数生成了200个数值作为权重传给参数,看一下和不设置权重时有哪些变化。
x0=np.random.rand(200)#生成总和为1的200个数,设置随机权重 ratio=1/sum(x0) x1=x0*ratio fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('weights默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,weights=x1) plt.title('设置weights');
当所有元素的权重都一样时是第一幅图的情况,而进行权重设置后,分布情况发生了变化,而且y轴也发生了变化,不再是单纯的计数。在实际工作中要谨慎使用权重,以符合业务需求为主哈。
如果英文比较好的人们,一眼就能看出这个参数的作用,直译成中文就是累积的意思。到这里又出现了一个小问题,很多人对“累积”和“累计”又傻傻分不清了,其实这两者还是很容易区分的,看下图特别直观:
是不是能直观区分“累积”和“累计”了?
那就继续探索cumulative参数吧,这个参数接收布尔值,默认为False,通过代码来看一下参数设置不同都有怎样的结果。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('cumulative默认False') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,cumulative=True) #累积直方图,展示累积分布 plt.title('cumulative=True');
左边时普通的直方图,右边时累积直方图,同样可以根据实际的业务需求来进行参数设置哦。
由于篇幅有限,对直方图函数的介绍就先到这里啦。细心的小伙伴可能发现了介绍参数的顺序就是按照函数官方文档中参数的顺序来的,没错,就是按照这个顺序进行的。但是参数中的第一个参数x却没有进行介绍,是这个参数没什么可介绍的嘛?当然不是,这个参数也是有些小细节需要注意的,具体的讲解留到下一篇文章和其他参数一起介绍啦。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16