
首先按照惯例先来认识下直方图是谁,以下是从维基百科搬运过来的直方图的定义:
在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量,以长条图(bar)的形式具体表现。因为直方图的长度及宽度很适合用来表现数量上的变化,所以较容易解读差异小的数值。
直方图也是用条形进行标注的,而条形图和直方图犹如孪生兄弟般让很多人都傻傻分不清,那么我们就先来好好区分一下这两种图形吧:
单纯文字不够直观的话,我们来个图感受下:
假设我们有一组数据,是一个学校200位同学的身高数据,如果想要知道该校学生身高的分布,那么直方图再合适不过了。
这里我用随机数生成了200个值在150到180之间的数表示身高信息:
data = np.random.randint(150,180,200) data
输出的结果:
array([162, 166, 158, 166, 165, 170, 157, 156, 164, 161, 154, 176, 166, 176, 153, 169, 164, 153, 171, 175, 171, 173, 155, 165, 168, 160, 162, 150, 151, 169, 166, 152, 174, 176, 160, 155, 158, 152, 159, 179, 179, 168, 178, 166, 174, 171, 167, 166, 165, 163, 164, 153, 153, 153, 162, 167, 169, 155, 155, 175, 161, 151, 173, 154, 151, 151, 166, 168, 167, 173, 166, 164, 175, 172, 163, 175, 154, 169, 160, 174, 163, 167, 156, 154, 157, 169, 160, 176, 150, 154, 158, 167, 164, 153, 152, 165, 165, 160, 167, 161, 164, 177, 177, 159, 161, 171, 169, 150, 165, 156, 156, 155, 165, 164, 179, 164, 179, 155, 172, 151, 178, 171, 164, 165, 161, 166, 170, 175, 163, 163, 179, 175, 173, 150, 171, 150, 178, 175, 152, 176, 168, 150, 172, 166, 176, 170, 174, 174, 152, 158, 171, 165, 167, 152, 163, 167, 164, 151, 174, 169, 169, 166, 167, 168, 179, 160, 179, 156, 168, 168, 172, 175, 160, 165, 160, 161, 164, 179, 158, 176, 175, 154, 167, 159, 153, 169, 151, 158, 163, 169, 155, 165, 178, 151, 168, 164, 169, 177, 150, 169])
以上就是200位同学的身高信息了,存储在一个数组中。
如果是常见的查看分布,直方图很容易绘制,这里我们通过这组数据探索下直方图函数中各个参数的作用,以更游刃有余的绘制符合需求的直方图。
bins参数指的是要将数据分成几组,它接收的参数可以是整数,也可以是序列,还可以是字符串,常用的是整数和序列。
通过代码来看一下区别:
fig = plt.figure(figsize=(16,4)) pic1 = fig.add_subplot(131) plt.hist(data) plt.title("bins默认10") pic2 = fig.add_subplot(132) plt.hist(data,bins = 15) plt.title("bins = 15") pic3 = fig.add_subplot(133) plt.hist(data,bins = [150,153,156,159,162,165,168,171,174,179]) plt.title("bins取值为序列");
能够看出即使是同一个数据集,分组的情况不同,呈现出来的分布也是有区别的,所以如何分组分成几组也是有学问的。
如果传给参数的是序列,则表示将每个分组的临界值都标识出来,缺点是比较麻烦,优点是很灵活,可以自主决定每个组的组距,每个组的组距都可以是不同的,如果分5组记得需要的临界值是6个,参数序列中需要有6个数值。
一般绘制直方图,都是对整个数据集绘制,有时候可能会有这样的需求,比如我想看该校中身高在155cm到175cm之间的身高分布,那么就需要将整个数据集中符合要求的身高挑选出来绘制直方图,实际上不用这么麻烦,用range参数就可以解决,这个参数就是指定绘图时使用数据的范围的,它接收的是一个元组,元组中放入两个数值表示所取数据的范围。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('range默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,range=(155,175)) #设置范围从155-175 plt.title('range=(155,175)');
能够看到x轴的数值范围发生了变化,整个直方图的形状也发生了变化。
这个参数的意思其实很直观,参数名字直译成中文就是密度的意思。普通的直方图y轴表示的都是频数,而通过density参数可以将y轴转化成密度刻度,这个参数接收布尔值,默认为None。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) #y轴表示计数 plt.title('density默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10, density=True) # density=True 将原本y轴的计数转换成概率密度的计数,直方图下面积为1 plt.title('density=True');
虽然两个图的形状是完全一模一样的,但是细看就能发现y轴的数值不一样,具体的参数作用已经以备注的形式标注到代码中了哦。
这里涉及到了另一个参数normed,这个参数已经被弃用了,它的作用和density一样,只用density就可以了,
大家对这个参数应该不陌生,它经常出现,表示权重。没错在这里也是表示设置权重。它接收的是一个序列,序列中是数值,数值的数量和原数据集中元素的个数一致,也就是每个数值都有自己单独的权重,我用随机数生成了200个数值作为权重传给参数,看一下和不设置权重时有哪些变化。
x0=np.random.rand(200)#生成总和为1的200个数,设置随机权重 ratio=1/sum(x0) x1=x0*ratio fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('weights默认None') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,weights=x1) plt.title('设置weights');
当所有元素的权重都一样时是第一幅图的情况,而进行权重设置后,分布情况发生了变化,而且y轴也发生了变化,不再是单纯的计数。在实际工作中要谨慎使用权重,以符合业务需求为主哈。
如果英文比较好的人们,一眼就能看出这个参数的作用,直译成中文就是累积的意思。到这里又出现了一个小问题,很多人对“累积”和“累计”又傻傻分不清了,其实这两者还是很容易区分的,看下图特别直观:
是不是能直观区分“累积”和“累计”了?
那就继续探索cumulative参数吧,这个参数接收布尔值,默认为False,通过代码来看一下参数设置不同都有怎样的结果。
fig = plt.figure(figsize=(9,4)) pic1 = fig.add_subplot(121) plt.hist(data,bins = 10) plt.title('cumulative默认False') pic2 = fig.add_subplot(122) plt.hist(data,bins = 10,cumulative=True) #累积直方图,展示累积分布 plt.title('cumulative=True');
左边时普通的直方图,右边时累积直方图,同样可以根据实际的业务需求来进行参数设置哦。
由于篇幅有限,对直方图函数的介绍就先到这里啦。细心的小伙伴可能发现了介绍参数的顺序就是按照函数官方文档中参数的顺序来的,没错,就是按照这个顺序进行的。但是参数中的第一个参数x却没有进行介绍,是这个参数没什么可介绍的嘛?当然不是,这个参数也是有些小细节需要注意的,具体的讲解留到下一篇文章和其他参数一起介绍啦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28