
我们一直在讲python可视化,用matplotlib来绘制各类图表,今天我们再来讲讲matplotlib的坐标轴和rc参数设置指南!
设置坐标轴
还记得上次画的那条“项链”嘛?结尾的时候有说过,这些是新手村礼包,还有很多其他值得探索的地方呢,那么就一起来看康还有哪些意想不到的操作吧(包括但不限于折线图哦,很多操作在其他图中也是可以运用哒!)
当我看到这样一副图的时候,心里有点点疑问,貌似和手绘的图有点不一样啊,到底哪里不一样呢,来个对比看一下。
这是matplotlib绘制的y = x^2:
这是本人亲手绘制的y = x^2:
(本灵魂画手已上线,非战斗人员请撤离!不要太在意细节哈,忽视那个长的不太协调的x轴和弯弯曲曲如蚯蚓的抛物线,手残党表示真的尽力了,意会!意会哈!)
正经的说,虽然都是y = x^2的图像,是不是感觉两幅图差异还蛮大的。
最明显的区别在于x轴和y轴的位置,绘制抛物线时我们习惯与y轴位于中间位置,所以在用matplotlib绘图时可以不可以改变坐标轴位置呢?答案当然是肯定的!
ax = plt.gca() #获取坐标轴对象 ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框 ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框 ax.xaxis.set_ticks_position('bottom') # 指定下边的边框作为 x 轴 ax.yaxis.set_ticks_position('left') #指定左边的边框为 y 轴 ax.spines['bottom'].set_position(('data', 0)) #指定 data 设置的bottom(也就是指定的x轴)绑定到y轴的0这个点上 ax.spines['left'].set_position(('data', 0)) #指定 data 设置的left(也就是指定的y轴)绑定到x轴的0这个点上 x = np.arange(-1,1,0.01) y = x**2 plt.plot(x,y) plt.legend(["y = x^2"],loc = 1) plt.savefig("line3.jpg") plt.show()
效果图如下:
这样看起来是不是和上边手绘的那一个图相似了很多?
改变坐标轴的步骤在上边代码中注释部分写的很清楚啦,不再占篇幅赘述,其实就是把用不到的边框透明化,然后移动了另外两个边框作为x轴和y轴,其他刻度、标签以及图标等的设置在介绍折线图的时候都有介绍过。
rc参数设置
作为一个英语渣,能用中文的时候还是希望能用中文,然而当我在绘图的时候却发生了一点意外,喏,就是下边这副眼熟的图:
plt.figure(figsize=(6,4),dpi = 80) plt.plot(x,y) plt.title("折线图") plt.xlabel("x") plt.ylabel("y") plt.xlim(-1,1) plt.ylim(0,1.1) plt.xticks([-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]) plt.yticks([0,0.25,0.5,0.75,1]) plt.legend(["y = x^2"],loc = 9) plt.savefig("line.png") plt.show()
和最开始的那幅图几乎一毛一样,只不过改了个标题,上边图的标题是“line”,我想改成“折线图”三个字,结果就变成这个样子了,原因在于原生的matplotlib是不支持中文显示的,所以需要进行rc参数的设置。所谓rc参数,实际上修改是默认的属性,原来不支持中文,修改一下让它支持中文就可以了。
在这里还有一个小坑,那就是通过rc参数设置显示中文后,一些特殊符号比如负号显示会出现问题,这里不再用具体的例子引出这个小坑了,我们顺手给它一起解决掉,节省点篇幅(实际是我有点懒233)
解决方案很久简单,两行代码搞定:
plt.rcParams['font.sans-serif']=['Simhei'] #显示中文 plt.rcParams['axes.unicode_minus']=False #显示负号
再运行上边的代码看下效果:
中文和负号都正常显示啦!
rc参数的设置到这里就结束了嘛?实际上常用的rc参数设置就是这两行没错,然而还有需要提醒的一点,记下来,要考的!
rc参数修改的是全局默认属性,也就是说,这个参数一旦设置,后续进行的所有操作都会受到rc参数的影响!
这也是进行一次设置,全篇画图函数都可以正常显示中文和负号的原因。
而rc参数还可以进行诸如线条宽度,标记点尺寸等等的各种设置,这些设置对于每个画图函数来说几乎都有相对应的参数进行单独设置,完全没有必要在rc参数中对全篇进行限制,所以如非必要,最好不要通过rc参数进行除了显示中文和符号外的其他设置。
同一幅图中绘制多条折线
其实折线图一个很重要的应用是查看事务随着时间的发展所呈现出来的趋势,有时候我们想要查看不同的指标在同一段时间内的变化趋势,就需要在一副图中绘制多条折线,这种需求要怎样实现呢?
实际上原理很简单,那就是创建一个画布后,在同一块画布中重复绘制就可以了:
plt.figure(figsize=(12,4)) plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,1].iloc[:15],marker = "o",label = "收盘价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,2].iloc[:15],marker = "v",label = "最高价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,3].iloc[:15],marker = "v",label = "最低价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,4].iloc[:15],marker = "o",label = "开盘价") plt.legend();
效果图:
这是一段时间内股票价格的数据,截取了时间作为x轴数据,开盘价,最高价,最低价,收盘价为y轴数据绘制的折线图,能够看出这一段时间内股票价格的走势还是比较平稳的。
温馨提示:在同一块画布中可以重复绘图,仔细观察会发现,红色线条在其他线条图层的上方,即后绘制的图会覆盖前边绘制的图,所以,在绘制图形时要注意,例如饼图这种,需要同时展现好几块饼的情况,不能采用这种绘图方式,而是需要创建子图,进行多图展示!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26