我们一直在讲python可视化,用matplotlib来绘制各类图表,今天我们再来讲讲matplotlib的坐标轴和rc参数设置指南!
设置坐标轴
还记得上次画的那条“项链”嘛?结尾的时候有说过,这些是新手村礼包,还有很多其他值得探索的地方呢,那么就一起来看康还有哪些意想不到的操作吧(包括但不限于折线图哦,很多操作在其他图中也是可以运用哒!)
当我看到这样一副图的时候,心里有点点疑问,貌似和手绘的图有点不一样啊,到底哪里不一样呢,来个对比看一下。
这是matplotlib绘制的y = x^2:
这是本人亲手绘制的y = x^2:
(本灵魂画手已上线,非战斗人员请撤离!不要太在意细节哈,忽视那个长的不太协调的x轴和弯弯曲曲如蚯蚓的抛物线,手残党表示真的尽力了,意会!意会哈!)
正经的说,虽然都是y = x^2的图像,是不是感觉两幅图差异还蛮大的。
最明显的区别在于x轴和y轴的位置,绘制抛物线时我们习惯与y轴位于中间位置,所以在用matplotlib绘图时可以不可以改变坐标轴位置呢?答案当然是肯定的!
ax = plt.gca() #获取坐标轴对象 ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框 ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框 ax.xaxis.set_ticks_position('bottom') # 指定下边的边框作为 x 轴 ax.yaxis.set_ticks_position('left') #指定左边的边框为 y 轴 ax.spines['bottom'].set_position(('data', 0)) #指定 data 设置的bottom(也就是指定的x轴)绑定到y轴的0这个点上 ax.spines['left'].set_position(('data', 0)) #指定 data 设置的left(也就是指定的y轴)绑定到x轴的0这个点上 x = np.arange(-1,1,0.01) y = x**2 plt.plot(x,y) plt.legend(["y = x^2"],loc = 1) plt.savefig("line3.jpg") plt.show()
效果图如下:
这样看起来是不是和上边手绘的那一个图相似了很多?
改变坐标轴的步骤在上边代码中注释部分写的很清楚啦,不再占篇幅赘述,其实就是把用不到的边框透明化,然后移动了另外两个边框作为x轴和y轴,其他刻度、标签以及图标等的设置在介绍折线图的时候都有介绍过。
rc参数设置
作为一个英语渣,能用中文的时候还是希望能用中文,然而当我在绘图的时候却发生了一点意外,喏,就是下边这副眼熟的图:
plt.figure(figsize=(6,4),dpi = 80) plt.plot(x,y) plt.title("折线图") plt.xlabel("x") plt.ylabel("y") plt.xlim(-1,1) plt.ylim(0,1.1) plt.xticks([-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]) plt.yticks([0,0.25,0.5,0.75,1]) plt.legend(["y = x^2"],loc = 9) plt.savefig("line.png") plt.show()
和最开始的那幅图几乎一毛一样,只不过改了个标题,上边图的标题是“line”,我想改成“折线图”三个字,结果就变成这个样子了,原因在于原生的matplotlib是不支持中文显示的,所以需要进行rc参数的设置。所谓rc参数,实际上修改是默认的属性,原来不支持中文,修改一下让它支持中文就可以了。
在这里还有一个小坑,那就是通过rc参数设置显示中文后,一些特殊符号比如负号显示会出现问题,这里不再用具体的例子引出这个小坑了,我们顺手给它一起解决掉,节省点篇幅(实际是我有点懒233)
解决方案很久简单,两行代码搞定:
plt.rcParams['font.sans-serif']=['Simhei'] #显示中文 plt.rcParams['axes.unicode_minus']=False #显示负号
再运行上边的代码看下效果:
中文和负号都正常显示啦!
rc参数的设置到这里就结束了嘛?实际上常用的rc参数设置就是这两行没错,然而还有需要提醒的一点,记下来,要考的!
rc参数修改的是全局默认属性,也就是说,这个参数一旦设置,后续进行的所有操作都会受到rc参数的影响!
这也是进行一次设置,全篇画图函数都可以正常显示中文和负号的原因。
而rc参数还可以进行诸如线条宽度,标记点尺寸等等的各种设置,这些设置对于每个画图函数来说几乎都有相对应的参数进行单独设置,完全没有必要在rc参数中对全篇进行限制,所以如非必要,最好不要通过rc参数进行除了显示中文和符号外的其他设置。
同一幅图中绘制多条折线
其实折线图一个很重要的应用是查看事务随着时间的发展所呈现出来的趋势,有时候我们想要查看不同的指标在同一段时间内的变化趋势,就需要在一副图中绘制多条折线,这种需求要怎样实现呢?
实际上原理很简单,那就是创建一个画布后,在同一块画布中重复绘制就可以了:
plt.figure(figsize=(12,4)) plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,1].iloc[:15],marker = "o",label = "收盘价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,2].iloc[:15],marker = "v",label = "最高价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,3].iloc[:15],marker = "v",label = "最低价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,4].iloc[:15],marker = "o",label = "开盘价") plt.legend();
效果图:
这是一段时间内股票价格的数据,截取了时间作为x轴数据,开盘价,最高价,最低价,收盘价为y轴数据绘制的折线图,能够看出这一段时间内股票价格的走势还是比较平稳的。
温馨提示:在同一块画布中可以重复绘图,仔细观察会发现,红色线条在其他线条图层的上方,即后绘制的图会覆盖前边绘制的图,所以,在绘制图形时要注意,例如饼图这种,需要同时展现好几块饼的情况,不能采用这种绘图方式,而是需要创建子图,进行多图展示!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31