我们一直在讲python可视化,用matplotlib来绘制各类图表,今天我们再来讲讲matplotlib的坐标轴和rc参数设置指南!
设置坐标轴
还记得上次画的那条“项链”嘛?结尾的时候有说过,这些是新手村礼包,还有很多其他值得探索的地方呢,那么就一起来看康还有哪些意想不到的操作吧(包括但不限于折线图哦,很多操作在其他图中也是可以运用哒!)
当我看到这样一副图的时候,心里有点点疑问,貌似和手绘的图有点不一样啊,到底哪里不一样呢,来个对比看一下。
这是matplotlib绘制的y = x^2:
这是本人亲手绘制的y = x^2:
(本灵魂画手已上线,非战斗人员请撤离!不要太在意细节哈,忽视那个长的不太协调的x轴和弯弯曲曲如蚯蚓的抛物线,手残党表示真的尽力了,意会!意会哈!)
正经的说,虽然都是y = x^2的图像,是不是感觉两幅图差异还蛮大的。
最明显的区别在于x轴和y轴的位置,绘制抛物线时我们习惯与y轴位于中间位置,所以在用matplotlib绘图时可以不可以改变坐标轴位置呢?答案当然是肯定的!
ax = plt.gca() #获取坐标轴对象 ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框 ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框 ax.xaxis.set_ticks_position('bottom') # 指定下边的边框作为 x 轴 ax.yaxis.set_ticks_position('left') #指定左边的边框为 y 轴 ax.spines['bottom'].set_position(('data', 0)) #指定 data 设置的bottom(也就是指定的x轴)绑定到y轴的0这个点上 ax.spines['left'].set_position(('data', 0)) #指定 data 设置的left(也就是指定的y轴)绑定到x轴的0这个点上 x = np.arange(-1,1,0.01) y = x**2 plt.plot(x,y) plt.legend(["y = x^2"],loc = 1) plt.savefig("line3.jpg") plt.show()
效果图如下:
这样看起来是不是和上边手绘的那一个图相似了很多?
改变坐标轴的步骤在上边代码中注释部分写的很清楚啦,不再占篇幅赘述,其实就是把用不到的边框透明化,然后移动了另外两个边框作为x轴和y轴,其他刻度、标签以及图标等的设置在介绍折线图的时候都有介绍过。
rc参数设置
作为一个英语渣,能用中文的时候还是希望能用中文,然而当我在绘图的时候却发生了一点意外,喏,就是下边这副眼熟的图:
plt.figure(figsize=(6,4),dpi = 80) plt.plot(x,y) plt.title("折线图") plt.xlabel("x") plt.ylabel("y") plt.xlim(-1,1) plt.ylim(0,1.1) plt.xticks([-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]) plt.yticks([0,0.25,0.5,0.75,1]) plt.legend(["y = x^2"],loc = 9) plt.savefig("line.png") plt.show()
和最开始的那幅图几乎一毛一样,只不过改了个标题,上边图的标题是“line”,我想改成“折线图”三个字,结果就变成这个样子了,原因在于原生的matplotlib是不支持中文显示的,所以需要进行rc参数的设置。所谓rc参数,实际上修改是默认的属性,原来不支持中文,修改一下让它支持中文就可以了。
在这里还有一个小坑,那就是通过rc参数设置显示中文后,一些特殊符号比如负号显示会出现问题,这里不再用具体的例子引出这个小坑了,我们顺手给它一起解决掉,节省点篇幅(实际是我有点懒233)
解决方案很久简单,两行代码搞定:
plt.rcParams['font.sans-serif']=['Simhei'] #显示中文 plt.rcParams['axes.unicode_minus']=False #显示负号
再运行上边的代码看下效果:
中文和负号都正常显示啦!
rc参数的设置到这里就结束了嘛?实际上常用的rc参数设置就是这两行没错,然而还有需要提醒的一点,记下来,要考的!
rc参数修改的是全局默认属性,也就是说,这个参数一旦设置,后续进行的所有操作都会受到rc参数的影响!
这也是进行一次设置,全篇画图函数都可以正常显示中文和负号的原因。
而rc参数还可以进行诸如线条宽度,标记点尺寸等等的各种设置,这些设置对于每个画图函数来说几乎都有相对应的参数进行单独设置,完全没有必要在rc参数中对全篇进行限制,所以如非必要,最好不要通过rc参数进行除了显示中文和符号外的其他设置。
同一幅图中绘制多条折线
其实折线图一个很重要的应用是查看事务随着时间的发展所呈现出来的趋势,有时候我们想要查看不同的指标在同一段时间内的变化趋势,就需要在一副图中绘制多条折线,这种需求要怎样实现呢?
实际上原理很简单,那就是创建一个画布后,在同一块画布中重复绘制就可以了:
plt.figure(figsize=(12,4)) plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,1].iloc[:15],marker = "o",label = "收盘价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,2].iloc[:15],marker = "v",label = "最高价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,3].iloc[:15],marker = "v",label = "最低价") plt.plot(df.iloc[:,0].iloc[:15],df.iloc[:,4].iloc[:15],marker = "o",label = "开盘价") plt.legend();
效果图:
这是一段时间内股票价格的数据,截取了时间作为x轴数据,开盘价,最高价,最低价,收盘价为y轴数据绘制的折线图,能够看出这一段时间内股票价格的走势还是比较平稳的。
温馨提示:在同一块画布中可以重复绘图,仔细观察会发现,红色线条在其他线条图层的上方,即后绘制的图会覆盖前边绘制的图,所以,在绘制图形时要注意,例如饼图这种,需要同时展现好几块饼的情况,不能采用这种绘图方式,而是需要创建子图,进行多图展示!
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16