接着上文我们来聊一下“用户激活”这个话题,提到用户激活,怎么样的营销决策是好的呢?相信很多同学脑海都浮现一个词,没错,就是“Aha”时刻,用户激活是离不开Aha时刻的。
如何定义它呢?Aha(惊喜)时刻,就是新用户第一次认识到产品的价值,从而脱口说出“啊哈,原来这个产品可以帮我做这个啊”的那个时刻。
这是一个至关重要的时刻,他区分了那些从产品中发现了价值和那些没发现价值的用户。这也是一个“有感情”的时刻,用户觉得他从广告里看到的那些承诺,产品在这一刻都履行了,因此觉得满足甚至感到惊喜。
在这里给大家列举了几个知名产品的Aha时刻:
通过这些例子,大家不难发现定义Aha时刻的一些规律——那就是清晰、具体、可衡量,并且发生在用户体验的较早期,以及符合下面的描述:
(谁)在(多长时间内)完成(多少次)(什么行为)
不难看出,要找到以上信息来定义Aha时刻,需要三步:
第一步,定义一个关键行为;
第二步,找到关键行为的完成者;
第三步,需要明确规定在早期多长的时间内?并且在这段时间内用户需要完成多少次关键行为?
举个例子,对于各大社交网站如Facebook、Twitter来说这个关键行为是建立社交关系;对于企业软件Slack而言则是其核心功能:发送信息。让新用户通过采取某个特点行为迅速了解产品的价值所在,到达Aha时刻,这个行为就叫做“关键行为”。但是,每个产品的关键行为不同,要具体分析。小伙伴们可以带入性的来思考一下这几个问题:
1. 你希望用户每次使用产品时都做的行为是什么?
2. 用户做出了哪个行为更有可能长期留存下来?
3. 哪个指标是整个公司最在意的?哪个指标是你最希望提升的?哪些用户行为直接影响了这个指标?
4. 你有几个不同产品或者功能吗?他们都分别是什么?每个产品或者功能的成功指标是什么?和哪些用户行为相关?
通过以上问题找到了一些方向之后,我们要做的就是通过下面4步确认关键行为。
第一步,列出可能的关键指标;
第二步,通过数据分析筛选关键行为;
第三步,通过定性用户调研进一步确认关键行为;
第四步,找到关键行为和Aha时刻
那么,在了解新用户引导方面的激动指数时,我们首先要明确用户的初始激动指数,这个指数通常来自于品牌,广告设计和来源投放;其次,了解各个元素对激动指数的影响;最后,综合审计新用户激活漏斗的各个环节。
通过前面讲的内容,我们明确了新用户激活的重要性,知道了新用户激活的重要性,知道了如何找到Aha时刻,衡量新用户激活该采用哪些指标,下面我们通过一些具体的案例,介绍用户引导的四大原则和需要避免的八大误区。
原则一:增强动力。Uber的用户推荐流程巧妙利用推荐人的社会信任。
原则二:减少障碍。每一个障碍,用户都会消耗能量,其激动指数都会下降一点点。
原则三:适时助推。
原则四:私人订制。用户的偏好不同、背景不同、使用产品的目的不同,“千人一面”的新用户引导很可能不能满足每个用户的需求,这是需要引导个人化,最大化的满足用户需求,提高激活率。以下是几个成功案例:
除了四大原则外,在建立新用户引导流程时还应该注意避免下面的八大误区。
第一, 新用户注册和引导步骤太多,流程太长;
第二, 没有聚焦到一个关键行为上,想让新用户做的事情太多;
第三, 花太多时间教用户怎么做界面,而没有让用户使用产品;
第四, 让用户太快完成设置,没有给予足够的教育;
第五, 新用户注册太顺利了,没有设置必要的障碍筛选掉不合格的用户;
第六, 以“注册完成”为衡量新用户引导的标准,而不是“用户激活”;
第七, 对每个用户都统一对待;
第八, (最重要一点)完全照抄以上介绍的最佳实践,而不进行A/B测试。对于不了解A/B测试的同学可以关注小P的下一篇简读哟~讲解王晔老师的A/B测试。
写在最后:新用户激活是一个系统的工程,需要多个团队的参与、多个渠道的配合,并且不限于新用户注册的第一天,而是要延续到首周、首月,甚至是更长的时间段。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20