理论物理学家和研究科学家Mehmet Suzen曾表示,二分类任务是机器学习的基础。但是,其性能的标准统计信息是一种数学工具,ROC-AUC很难解释。在这里,引入了一种性能度量,该度量仅考虑进行正确的二进制分类的可能性。
机器学习模型的核心应用是二分类任务。从用于诊断测试的医学领域到为消费者提供信用风险决策的领域,有很多领域。建立分类器的技术多种多样,从简单的决策树到逻辑回归,再到最近利用多层神经网络的超酷深度学习模型。但是,它们在构造和训练方法上在数学上有所不同,就其评估而言,事情变得棘手。在本文中,我们为实践中的二元分类器提出了一种简单且可解释的性能指标。
为什么ROC-AUC无法解释?
因为不同的阈值会产生不同的混淆矩阵。
报告分类器性能的实际标准是使用接收机工作特性(ROC)-曲线下面积(AUC)''度量。它起源于1940年代美国海军研发雷达时,用于测量探测性能。 ROC-AUC的含义至少有5种不同的定义,即使您拥有博士学位也是如此。在机器学习中,人们很难解释AUC作为绩效指标的含义。由于AUC功能几乎在所有图书馆中都可用,并且它几乎像一种宗教仪式一样,在机器学习论文中作为分类表现进行报告。但是,除了荒谬的比较问题之外,其解释并不容易,请参阅hmeasure。 AUC会根据从不同阈值的混淆矩阵中提取的假正率(FPR)来衡量真正率(TPR)曲线下的面积。
f(x)= y
∫10 f(x)dx = AUC
其中,y是TPR,x是FPR。除了多种解释且容易混淆之外,将积分放在FPR之上没有明确的目的。显然,我们希望通过将FPR设置为零来实现完美的分类,但是该区域在数学上并不清晰,这意味着它作为一个数学对象是不清楚的。
正确分类的概率(PCC)
对于二分类问题的分类器而言,一种简单且可解释的性能指标对于技术含量高的数据科学家和非技术利益相关者都非常有用。这个方向的基本租户是,分类器技术的目的是区分两个类别的能力。这归结为一个概率值,正确分类的概率(PCC)。一个明显的选择是所谓的平衡精度(BA)。通常建议将其用于不平衡问题,即使是SAS也是如此;尽管他们使用了概率相乘。由于统计上的依赖性,在这里我们将BA称为PCC并使用加法代替:
PCC =(TPR + TNR)/ 2
TPR = TP /(条件正例)= TP /(TP + FN)
TNR = TN /(条件负例)= TN /(TN + FP)。
PCC告诉我们分类器在检测任何一个分类中有多好,它是一个概率值[0,1]。请注意,即使我们的数据在生产中是均衡的,在肯定和否定情况下使用总精度也会产生误导,即使我们衡量绩效的批次可能不均衡,所以仅凭准确性并不是一个好方法。
生产问题
迫在眉睫的问题是如何在生成混淆矩阵时选择阈值?一种选择是选择一个阈值,以使PCC在测试集上的生产最大化。为了改善PCC的估计,可以对测试集进行重采样以获得良好的不确定性。
结论
我们尝试通过引入PCC或平衡精度作为二进制分类器的一种简单且可解释的性能指标来规避报告AUC。这很容易向非技术人员解释。可以引入一种改进的PCC,它考虑到更好的估计属性,但是主要解释仍然与正确分类的可能性相同。
数据分析咨询请扫描二维码
作为数据分析领域的探险家,我们常常面临着选择正确工具和技能的挑战。在这个数字化时代,学会并精通适合行业需求的工具显得尤为 ...
2024-12-03在数据分析领域,掌握多种软件和编程语言至关重要,选择合适的工具取决于个人需求和背景。让我们一起探索常用的数据分析工具及其 ...
2024-12-03在数据驱动的时代,数据分析成为了关键的技能。选择合适的数据分析工具至关重要,因为它们直接影响着你对数据的理解和分析效果。 ...
2024-12-03在当今数字化时代,数据分析已经成为各行各业中至关重要的角色。随着技术的迅猛发展和数据量的爆炸增长,数据分析师需要不断提升 ...
2024-12-03在当今数据驱动的世界中,数据分析已成为企业决策制定和战略规划的关键。其中,数据可视化是将复杂数据转化为简洁、易懂图形的重 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。学会利用数据进行分析不仅是一种技能,更是一种战略性决策工具。本文将探讨学 ...
2024-12-03揭示数据的无限价值 学习数据分析不仅仅是一种技能,更是探索信息海洋中宝藏的钥匙。数据分析的实用性体现在多个领域,如企业决 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。成为一名优秀的数据分析师,不仅需要具备技术实力,更需要拥有跨学科的知识储 ...
2024-12-03在当今数据驱动的世界中,成为一名优秀的数据分析师需要具备多方面的技能和知识。从统计学基础到机器学习算法,再到沟通能力和业 ...
2024-12-03在当今信息爆炸的时代,数据分析扮演着至关重要的角色。从商业决策到科学研究,数据分析为我们提供了深刻的洞察力和指导方向。然 ...
2024-12-03数据分析的基础知识 数据分析是一个多步骤且复杂的过程,旨在从数据中提取有价值信息以支持决策。这涉及数据的收集、清洗、转换 ...
2024-12-03数据分析是一门引人入胜且充满挑战的领域,它串联着数据的意义与我们的决策需求。无论你是初学者还是经验丰富的专家,掌握数据分 ...
2024-12-03数据分析培训的就业前景展现出令人振奋的态势。随着大数据、人工智能等前沿技术的快速发展,数据分析在各行各业中的应用愈发广泛 ...
2024-12-03在当今数字化时代,数据分析技能的重要性日益凸显。随着大数据、人工智能等领域的迅速发展,数据分析已经成为各行各业中备受瞩目 ...
2024-12-03作为一名数据分析师,除了扎实的数学基础外,掌握软技能同样至关重要。本文将深入探讨数据分析领域中不可或缺的软技能,并结合个 ...
2024-12-03市场需求与技术驱动 数据分析师的职业前景广阔,市场需求旺盛。在金融、医疗、零售、科技等领域,企业对数据分析师的需求不断攀 ...
2024-12-03市场需求与前景 数据分析师的职业前景广阔,伴随着多元化技能要求和清晰的职业发展路径。 在金融、医疗、零售、科技等领域, ...
2024-12-03作为数据分析师,掌握正确的工具和技能至关重要。在当今数据驱动的世界中,Python作为一种多才多艺的编程语言,在数据分析领域扮 ...
2024-12-03在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要掌握各种工具和技能来从海量数据中提炼出有价值的信息。其中 ...
2024-12-03数据分析实践是一门引人入胜的艺术,融合了技术与创意,为各行业带来前所未有的洞察力与决策支持。本文将探讨数据分析实战案例的 ...
2024-12-03