
Affinity Propogation最初是由Brendan Frey 和 Delbert Dueck于2007年在Science上提出的。相比其它的层次聚类算法,Affinity Propogation算法不需要预先指定聚类个数。
Affinity Propogation算法的原理可以简单的概括为:每一个数据点都会给其它的多有点发送信息,告知其它所有点每个目标对发送者(sender)的相对吸引力的目标值(target)。
随后,鉴于从所有其它sender收到信息的“attractiveness”,每个target所有sender一个回复,以告知与sender相联系的每一个sender的可用性。sender会给target回复相关信息,以告知每一个target对sender修正的相对“attractiveness”(基于从所有target收到的关于可用性的信息)。信息传递的整个过程直到达成一致才会停止。
一旦sender与某个target相联系,这个target就会称为该点(sender)的“典型代表(exemplar)”。所有被相同exemplar标记的点都被放置在一个聚类中。
假定一个如下的数据集。每一个参与者代表一个五维空间的数据点。
相似性矩阵(C)
除了在对角线上的元素外,其它的元素是负的均方误差作为两个数据间的相似值。
计算公式如下:c(i, j) = -||X_i-X_y||^2c(i,j)=−∣∣Xi−Xy∣∣2以Alice和Bob为例,两者间的相似性计算过程如下:(3-4)^2+(4-3)^2+(3-5)^2+(2-1)^2+(1-1)^2 = 7(3−4)2+(4−3)2+(3−5)2+(2−1)2+(1−1)2=7。
因此,Alice与Bob之间的相似值为-7。
相似性值的计算边界出现在Bob和Edna间:(4-1)^2+(3-1)^2+(5-3)^2+(1-2)^2+(1-3)^2 = 22(4−1)2+(3−1)2+(5−3)2+(1−2)2+(1−3)2=22Bob和Edna之间的相似值为-22。
通过逐步的计算,最后得到的结果如下:
一般对角线上的元素取相似值中较小的数,在本例中取值为-22,因此,得到的相似性矩阵如下:
Responsibility Matrix ®
这里的responsibility matrix 是中间的过度步骤。通过使用如下的公式计算responsibility matrix:r(i, k ) \leftarrow s(i, k)- max_{k^{'} such\ that\ k^{'} \not= \ k} \{a(i, k^{'})+s(i, k^{'})\},r(i,k)←s(i,k)−maxk′such that k′= k{a(i,k′)+s(i,k′)},其中,i表示协同矩阵的行,k表示列的关联矩阵。
例如,r(Alice, Bob)r(Alice,Bob)的值为-1, 首先提取similarity matrix中c(Alice, Bob)c(Alice,Bob)的值为-7, 减去similarity matrix中Alice行的最大值为-6,因此,得到r(Alice, Bob)=-1r(Alice,Bob)=−1。
取值的边界为r(Cary, Doug)r(Cary,Doug),其计算如下:
r(Cary, Doug) = -18-(-6)=-12r(Cary,Doug)=−18−(−6)=−12
根据上述公式计算得到的最终结果如下图所示:
Availability Matrix (a)
Availability Matrix的初始值为矩阵中的所有元素均为0。
首先,计算对角线上的元素值:a(k,k) \leftarrow \sum_{i^{'}such \ that \ i^{'} \not= k} max\{0, r\{i^{'}, k\}\},a(k,k)←i′such that i′=k∑max{0,r{i′,k}},其中,i表示协同矩阵的行,k表示协同矩阵的列。
实际上,上面的公式只告诉你沿着列,计算所有行与0比较的最大值(除列序与行序相等时的情况除外)。
例如,a(Alice, Alice)a(Alice,Alice)的计算如下:a(Alice, Alice) = 10+11+0+0 = 21a(Alice,Alice)=10+11+0+0=21
其次,计算非对角线上的元素值,分别以a(Alice, Cary)a(Alice,Cary)和a(Doug, Edna)a(Doug,Edna)为例,其计算过程如下所示:
a(Alice, Cary) = 1+0+0+0 = 1 \\ a(Doug, Edna)
= 0+0+0+9 = 9a(Alice,Cary)
=1+0+0+0=1a(Doug,Edna)
=0+0+0+9=9
以下公式是用于更新Availability Matrix,其公式如下:a(i, k) \leftarrow min\{0, r(k,k)+\sum_{i^{'} such \ that \ i^{'} \notin \{i, k\}} max{\{0, r(i^{'}, k)}\}\}a(i,k)←min{0,r(k,k)+i′such that i′∈/{i,k}∑max{0,r(i′,k)}}
当你想要更新a(Alice, Bob)a(Alice,Bob)的值时,其计算过程如下:a(Doug, Bob) = min\{{0,(-15)+0+0+0}\}=-15a(Doug,Bob)=min{0,(−15)+0+0+0}=−15最后得到的结果如下表所示:
Criterion Matrix ©
在得到上面的availability matrix后,将availability matrix和responsibility matrix的对应元素相加,便可得到criterion matrix。
其计算公式如下:c(i, k) \leftarrow r(i,k)+a(i,k).c(i,k)←r(i,k)+a(i,k).最后得到的criterion matrix的结果如下:
以上便是Affinity Propogation算法的计算过程,这是我见过最浅显易懂的讲解了,详见原文。
代码示例如下:
首先,导入相关库:
import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set() from sklearn.datasets.samples_generator import make_blobs from sklearn.cluster import AffinityPropagation
使用scikit-learn生成需要的数据集,详见如下:
X, clusters = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:,0], X[:,1], alpha=0.7, edgecolors='b')
训练模型(因为是无监督算法,因此不需要拆分训练集和测试集):
af = AffinityPropagation(preference=-50) clustering = af.fit(X)
最后,将不同聚类的点可视化:
plt.scatter(X[:,0], X[:,1], c=clustering.labels_, cmap='rainbow', alpha=0.7, edgecolors='b')
算法使用场景:
Affinity Propagation是一个无监督的机器学习算法,它尤其适用于那些不知道最佳聚类数情况的算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24