Affinity Propogation最初是由Brendan Frey 和 Delbert Dueck于2007年在Science上提出的。相比其它的层次聚类算法,Affinity Propogation算法不需要预先指定聚类个数。
Affinity Propogation算法的原理可以简单的概括为:每一个数据点都会给其它的多有点发送信息,告知其它所有点每个目标对发送者(sender)的相对吸引力的目标值(target)。
随后,鉴于从所有其它sender收到信息的“attractiveness”,每个target所有sender一个回复,以告知与sender相联系的每一个sender的可用性。sender会给target回复相关信息,以告知每一个target对sender修正的相对“attractiveness”(基于从所有target收到的关于可用性的信息)。信息传递的整个过程直到达成一致才会停止。
一旦sender与某个target相联系,这个target就会称为该点(sender)的“典型代表(exemplar)”。所有被相同exemplar标记的点都被放置在一个聚类中。
假定一个如下的数据集。每一个参与者代表一个五维空间的数据点。
相似性矩阵(C)
除了在对角线上的元素外,其它的元素是负的均方误差作为两个数据间的相似值。
计算公式如下:c(i, j) = -||X_i-X_y||^2c(i,j)=−∣∣Xi−Xy∣∣2以Alice和Bob为例,两者间的相似性计算过程如下:(3-4)^2+(4-3)^2+(3-5)^2+(2-1)^2+(1-1)^2 = 7(3−4)2+(4−3)2+(3−5)2+(2−1)2+(1−1)2=7。
因此,Alice与Bob之间的相似值为-7。
相似性值的计算边界出现在Bob和Edna间:(4-1)^2+(3-1)^2+(5-3)^2+(1-2)^2+(1-3)^2 = 22(4−1)2+(3−1)2+(5−3)2+(1−2)2+(1−3)2=22Bob和Edna之间的相似值为-22。
通过逐步的计算,最后得到的结果如下:
一般对角线上的元素取相似值中较小的数,在本例中取值为-22,因此,得到的相似性矩阵如下:
Responsibility Matrix ®
这里的responsibility matrix 是中间的过度步骤。通过使用如下的公式计算responsibility matrix:r(i, k ) \leftarrow s(i, k)- max_{k^{'} such\ that\ k^{'} \not= \ k} \{a(i, k^{'})+s(i, k^{'})\},r(i,k)←s(i,k)−maxk′such that k′= k{a(i,k′)+s(i,k′)},其中,i表示协同矩阵的行,k表示列的关联矩阵。
例如,r(Alice, Bob)r(Alice,Bob)的值为-1, 首先提取similarity matrix中c(Alice, Bob)c(Alice,Bob)的值为-7, 减去similarity matrix中Alice行的最大值为-6,因此,得到r(Alice, Bob)=-1r(Alice,Bob)=−1。
取值的边界为r(Cary, Doug)r(Cary,Doug),其计算如下:
r(Cary, Doug) = -18-(-6)=-12r(Cary,Doug)=−18−(−6)=−12
根据上述公式计算得到的最终结果如下图所示:
Availability Matrix (a)
Availability Matrix的初始值为矩阵中的所有元素均为0。
首先,计算对角线上的元素值:a(k,k) \leftarrow \sum_{i^{'}such \ that \ i^{'} \not= k} max\{0, r\{i^{'}, k\}\},a(k,k)←i′such that i′=k∑max{0,r{i′,k}},其中,i表示协同矩阵的行,k表示协同矩阵的列。
实际上,上面的公式只告诉你沿着列,计算所有行与0比较的最大值(除列序与行序相等时的情况除外)。
例如,a(Alice, Alice)a(Alice,Alice)的计算如下:a(Alice, Alice) = 10+11+0+0 = 21a(Alice,Alice)=10+11+0+0=21
其次,计算非对角线上的元素值,分别以a(Alice, Cary)a(Alice,Cary)和a(Doug, Edna)a(Doug,Edna)为例,其计算过程如下所示:
a(Alice, Cary) = 1+0+0+0 = 1 \\ a(Doug, Edna)
= 0+0+0+9 = 9a(Alice,Cary)
=1+0+0+0=1a(Doug,Edna)
=0+0+0+9=9
以下公式是用于更新Availability Matrix,其公式如下:a(i, k) \leftarrow min\{0, r(k,k)+\sum_{i^{'} such \ that \ i^{'} \notin \{i, k\}} max{\{0, r(i^{'}, k)}\}\}a(i,k)←min{0,r(k,k)+i′such that i′∈/{i,k}∑max{0,r(i′,k)}}
当你想要更新a(Alice, Bob)a(Alice,Bob)的值时,其计算过程如下:a(Doug, Bob) = min\{{0,(-15)+0+0+0}\}=-15a(Doug,Bob)=min{0,(−15)+0+0+0}=−15最后得到的结果如下表所示:
Criterion Matrix ©
在得到上面的availability matrix后,将availability matrix和responsibility matrix的对应元素相加,便可得到criterion matrix。
其计算公式如下:c(i, k) \leftarrow r(i,k)+a(i,k).c(i,k)←r(i,k)+a(i,k).最后得到的criterion matrix的结果如下:
以上便是Affinity Propogation算法的计算过程,这是我见过最浅显易懂的讲解了,详见原文。
代码示例如下:
首先,导入相关库:
import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set() from sklearn.datasets.samples_generator import make_blobs from sklearn.cluster import AffinityPropagation
使用scikit-learn生成需要的数据集,详见如下:
X, clusters = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:,0], X[:,1], alpha=0.7, edgecolors='b')
训练模型(因为是无监督算法,因此不需要拆分训练集和测试集):
af = AffinityPropagation(preference=-50) clustering = af.fit(X)
最后,将不同聚类的点可视化:
plt.scatter(X[:,0], X[:,1], c=clustering.labels_, cmap='rainbow', alpha=0.7, edgecolors='b')
算法使用场景:
Affinity Propagation是一个无监督的机器学习算法,它尤其适用于那些不知道最佳聚类数情况的算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28