异常值检测一般要求新发现的数据是否与现有观测数据具有相同的分布或者不同的分布,相同的分布可以称之为内点(inlier),具有不同分布的点可以称之为离群值。离群点和新奇点检测是不同的,有一个重要的区分必须掌握:
离群点检测:训练数据包含离群点,这些离群点被定义为远离其它内点的观察值。因此,离群点检测估计器会尝试拟合出训练数据中内围点聚集的区域, 而忽略异常值观察。
新奇点检测:训练数据没有受到离群点污染,我们感兴趣的是检测一个新的观测值是否为离群点。在这种情况下,离群点被认为是新奇点。
离群点检测和新奇点检测都用于异常检测, 其中一项感兴趣的是检测异常或异常观察。离群点检测又被称之为无监督异常检测,新奇点检测又被称之为半监督异常检测。 在离群点检测的背景下, 离群点/异常点不能够形成密集的簇,因为可用的估计器假设离群点/异常点位于低密度区域。相反的,在新奇点检测的背景下, 新奇点/异常点只要位于训练数据的低密度区域,是可以形成稠密聚类簇的,在此背景下被认为是正常的。
scikit-learn有一套机器学习工具estimator.fit(X_train),可用于新奇点或离群值检测。然后可以使用estimator.predict(X_test)方法将新观察值分类为离群点或内点 :内围点会被标记为1,而离群点标记为-1。
离群点检测方法总结
下面的例子展示了二维数据集上不同异常检测算法的特点。数据集包含一种或两种模式(高密度区域),以说明算法处理多模式数据的能力。
对于每个数据集,产生15%的样本作为随机均匀噪声。这个比例是给予OneClassSVM的nu参数和其他离群点检测算法的污染参数的值。由于局部离群因子(LOF)用于离群值检测时没有对新数据应用的预测方法,因此除了局部离群值因子(LOF)外,inliers和离群值之间的决策边界以黑色显示。
sklearn.svm。一个已知的eclasssvm对异常值很敏感,因此在异常值检测方面表现不太好。该估计器最适合在训练集没有异常值的情况下进行新颖性检测。也就是说,在高维的离群点检测,或者在不对嵌入数据的分布做任何假设的情况下,一个类支持向量机可能在这些情况下给出有用的结果,这取决于它的超参数的值。
sklearn.covariance。椭圆包络假设数据是高斯分布,并学习一个椭圆。因此,当数据不是单峰时,它就会退化。但是请注意,这个估计器对异常值是稳健的。
sklearn.ensemble。IsolationForest sklearn.neighbors。LocalOutlierFactor对于多模态数据集似乎表现得相当好。sklearn的优势。第三个数据集的局部离群因子超过其他估计显示,其中两种模式有不同的密度。这种优势是由LOF的局域性来解释的,即它只比较一个样本的异常分数与其相邻样本的异常分数。
最后,对于最后一个数据集,很难说一个样本比另一个样本更反常,因为它们是均匀分布在超立方体中。除了sklearn。svm。有一点过度拟合的支持向量机,所有的估计器都对这种情况给出了合适的解决方案。在这种情况下,明智的做法是更密切地观察样本的异常分数,因为一个好的估计器应该给所有样本分配相似的分数。
虽然这些例子给出了一些关于算法的直觉,但这种直觉可能不适用于非常高维的数据。
最后,请注意,模型的参数在这里是精心挑选的,但在实践中需要进行调整。在没有标记数据的情况下,这个问题是完全无监督的,因此模型的选择是一个挑战。
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Albert Thomas <albert.thomas@telecom-paristech.fr> # License: BSD 3 clause import time import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_moons, make_blobs from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Example settings n_samples = 300 outliers_fraction = 0.15 n_outliers = int(outliers_fraction * n_samples) n_inliers = n_samples - n_outliers # define outlier/anomaly detection methods to be compared anomaly_algorithms = [ ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)), ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)), ("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)), ("Local Outlier Factor", LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction))] # Define datasets blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2) datasets = [ make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0], 4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])), 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)] # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150)) plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 rng = np.random.RandomState(42) for i_dataset, X in enumerate(datasets): # Add outliers X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0) for name, algorithm in anomaly_algorithms: t0 = time.time() algorithm.fit(X) t1 = time.time() plt.subplot(len(datasets), len(anomaly_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) # fit the data and tag outliers if name == "Local Outlier Factor": y_pred = algorithm.fit_predict(X) else: y_pred = algorithm.fit(X).predict(X) # plot the levels lines and the points if name != "Local Outlier Factor": # LOF does not implement predict Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black') colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2]) plt.xlim(-7, 7) plt.ylim(-7, 7) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16