异常值检测一般要求新发现的数据是否与现有观测数据具有相同的分布或者不同的分布,相同的分布可以称之为内点(inlier),具有不同分布的点可以称之为离群值。离群点和新奇点检测是不同的,有一个重要的区分必须掌握:
离群点检测:训练数据包含离群点,这些离群点被定义为远离其它内点的观察值。因此,离群点检测估计器会尝试拟合出训练数据中内围点聚集的区域, 而忽略异常值观察。
新奇点检测:训练数据没有受到离群点污染,我们感兴趣的是检测一个新的观测值是否为离群点。在这种情况下,离群点被认为是新奇点。
离群点检测和新奇点检测都用于异常检测, 其中一项感兴趣的是检测异常或异常观察。离群点检测又被称之为无监督异常检测,新奇点检测又被称之为半监督异常检测。 在离群点检测的背景下, 离群点/异常点不能够形成密集的簇,因为可用的估计器假设离群点/异常点位于低密度区域。相反的,在新奇点检测的背景下, 新奇点/异常点只要位于训练数据的低密度区域,是可以形成稠密聚类簇的,在此背景下被认为是正常的。
scikit-learn有一套机器学习工具estimator.fit(X_train),可用于新奇点或离群值检测。然后可以使用estimator.predict(X_test)方法将新观察值分类为离群点或内点 :内围点会被标记为1,而离群点标记为-1。
离群点检测方法总结
下面的例子展示了二维数据集上不同异常检测算法的特点。数据集包含一种或两种模式(高密度区域),以说明算法处理多模式数据的能力。
对于每个数据集,产生15%的样本作为随机均匀噪声。这个比例是给予OneClassSVM的nu参数和其他离群点检测算法的污染参数的值。由于局部离群因子(LOF)用于离群值检测时没有对新数据应用的预测方法,因此除了局部离群值因子(LOF)外,inliers和离群值之间的决策边界以黑色显示。
sklearn.svm。一个已知的eclasssvm对异常值很敏感,因此在异常值检测方面表现不太好。该估计器最适合在训练集没有异常值的情况下进行新颖性检测。也就是说,在高维的离群点检测,或者在不对嵌入数据的分布做任何假设的情况下,一个类支持向量机可能在这些情况下给出有用的结果,这取决于它的超参数的值。
sklearn.covariance。椭圆包络假设数据是高斯分布,并学习一个椭圆。因此,当数据不是单峰时,它就会退化。但是请注意,这个估计器对异常值是稳健的。
sklearn.ensemble。IsolationForest sklearn.neighbors。LocalOutlierFactor对于多模态数据集似乎表现得相当好。sklearn的优势。第三个数据集的局部离群因子超过其他估计显示,其中两种模式有不同的密度。这种优势是由LOF的局域性来解释的,即它只比较一个样本的异常分数与其相邻样本的异常分数。
最后,对于最后一个数据集,很难说一个样本比另一个样本更反常,因为它们是均匀分布在超立方体中。除了sklearn。svm。有一点过度拟合的支持向量机,所有的估计器都对这种情况给出了合适的解决方案。在这种情况下,明智的做法是更密切地观察样本的异常分数,因为一个好的估计器应该给所有样本分配相似的分数。
虽然这些例子给出了一些关于算法的直觉,但这种直觉可能不适用于非常高维的数据。
最后,请注意,模型的参数在这里是精心挑选的,但在实践中需要进行调整。在没有标记数据的情况下,这个问题是完全无监督的,因此模型的选择是一个挑战。
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Albert Thomas <albert.thomas@telecom-paristech.fr> # License: BSD 3 clause import time import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_moons, make_blobs from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Example settings n_samples = 300 outliers_fraction = 0.15 n_outliers = int(outliers_fraction * n_samples) n_inliers = n_samples - n_outliers # define outlier/anomaly detection methods to be compared anomaly_algorithms = [ ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)), ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)), ("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)), ("Local Outlier Factor", LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction))] # Define datasets blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2) datasets = [ make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0], 4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])), 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)] # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150)) plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 rng = np.random.RandomState(42) for i_dataset, X in enumerate(datasets): # Add outliers X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0) for name, algorithm in anomaly_algorithms: t0 = time.time() algorithm.fit(X) t1 = time.time() plt.subplot(len(datasets), len(anomaly_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) # fit the data and tag outliers if name == "Local Outlier Factor": y_pred = algorithm.fit_predict(X) else: y_pred = algorithm.fit(X).predict(X) # plot the levels lines and the points if name != "Local Outlier Factor": # LOF does not implement predict Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black') colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2]) plt.xlim(-7, 7) plt.ylim(-7, 7) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20