异常值检测一般要求新发现的数据是否与现有观测数据具有相同的分布或者不同的分布,相同的分布可以称之为内点(inlier),具有不同分布的点可以称之为离群值。离群点和新奇点检测是不同的,有一个重要的区分必须掌握:
离群点检测:训练数据包含离群点,这些离群点被定义为远离其它内点的观察值。因此,离群点检测估计器会尝试拟合出训练数据中内围点聚集的区域, 而忽略异常值观察。
新奇点检测:训练数据没有受到离群点污染,我们感兴趣的是检测一个新的观测值是否为离群点。在这种情况下,离群点被认为是新奇点。
离群点检测和新奇点检测都用于异常检测, 其中一项感兴趣的是检测异常或异常观察。离群点检测又被称之为无监督异常检测,新奇点检测又被称之为半监督异常检测。 在离群点检测的背景下, 离群点/异常点不能够形成密集的簇,因为可用的估计器假设离群点/异常点位于低密度区域。相反的,在新奇点检测的背景下, 新奇点/异常点只要位于训练数据的低密度区域,是可以形成稠密聚类簇的,在此背景下被认为是正常的。
scikit-learn有一套机器学习工具estimator.fit(X_train),可用于新奇点或离群值检测。然后可以使用estimator.predict(X_test)方法将新观察值分类为离群点或内点 :内围点会被标记为1,而离群点标记为-1。
离群点检测方法总结
下面的例子展示了二维数据集上不同异常检测算法的特点。数据集包含一种或两种模式(高密度区域),以说明算法处理多模式数据的能力。
对于每个数据集,产生15%的样本作为随机均匀噪声。这个比例是给予OneClassSVM的nu参数和其他离群点检测算法的污染参数的值。由于局部离群因子(LOF)用于离群值检测时没有对新数据应用的预测方法,因此除了局部离群值因子(LOF)外,inliers和离群值之间的决策边界以黑色显示。
sklearn.svm。一个已知的eclasssvm对异常值很敏感,因此在异常值检测方面表现不太好。该估计器最适合在训练集没有异常值的情况下进行新颖性检测。也就是说,在高维的离群点检测,或者在不对嵌入数据的分布做任何假设的情况下,一个类支持向量机可能在这些情况下给出有用的结果,这取决于它的超参数的值。
sklearn.covariance。椭圆包络假设数据是高斯分布,并学习一个椭圆。因此,当数据不是单峰时,它就会退化。但是请注意,这个估计器对异常值是稳健的。
sklearn.ensemble。IsolationForest sklearn.neighbors。LocalOutlierFactor对于多模态数据集似乎表现得相当好。sklearn的优势。第三个数据集的局部离群因子超过其他估计显示,其中两种模式有不同的密度。这种优势是由LOF的局域性来解释的,即它只比较一个样本的异常分数与其相邻样本的异常分数。
最后,对于最后一个数据集,很难说一个样本比另一个样本更反常,因为它们是均匀分布在超立方体中。除了sklearn。svm。有一点过度拟合的支持向量机,所有的估计器都对这种情况给出了合适的解决方案。在这种情况下,明智的做法是更密切地观察样本的异常分数,因为一个好的估计器应该给所有样本分配相似的分数。
虽然这些例子给出了一些关于算法的直觉,但这种直觉可能不适用于非常高维的数据。
最后,请注意,模型的参数在这里是精心挑选的,但在实践中需要进行调整。在没有标记数据的情况下,这个问题是完全无监督的,因此模型的选择是一个挑战。
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Albert Thomas <albert.thomas@telecom-paristech.fr> # License: BSD 3 clause import time import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_moons, make_blobs from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Example settings n_samples = 300 outliers_fraction = 0.15 n_outliers = int(outliers_fraction * n_samples) n_inliers = n_samples - n_outliers # define outlier/anomaly detection methods to be compared anomaly_algorithms = [ ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)), ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)), ("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)), ("Local Outlier Factor", LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction))] # Define datasets blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2) datasets = [ make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0], 4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])), 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)] # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150)) plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 rng = np.random.RandomState(42) for i_dataset, X in enumerate(datasets): # Add outliers X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0) for name, algorithm in anomaly_algorithms: t0 = time.time() algorithm.fit(X) t1 = time.time() plt.subplot(len(datasets), len(anomaly_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) # fit the data and tag outliers if name == "Local Outlier Factor": y_pred = algorithm.fit_predict(X) else: y_pred = algorithm.fit(X).predict(X) # plot the levels lines and the points if name != "Local Outlier Factor": # LOF does not implement predict Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black') colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2]) plt.xlim(-7, 7) plt.ylim(-7, 7) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06