热线电话:13121318867

登录
首页大数据时代python数据挖掘的基本任务是什么?
python数据挖掘的基本任务是什么?
2020-07-07
收藏

数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。在python对数据的处理方式中,数据挖掘和数据分析是两个重要的方式,目的是为了从数据中获取具有科研或者商业价值的信息。

python数据挖掘的基本任务包括分类与预测、聚类分析、关联规则、奇异值检测和智能推荐等。通过完成这些任务,发现数据的潜在价值,指导商业和科研决策,给科学研究带来指导以及给商业带来新价值。下面就分别来认识一下常见的基本任务。

1.分类与预测

是一种用标号的进行学习的方式,这种编号是类编号。这种类标号若是离散的,属于分类问题;若是连续的,属于预测问题,或者称为回归问题。从广义上来说,不管是分类,还是回归,都可以看做是一种预测,差异就是预测的结果是离散的还是连续的。

2.聚类分析

就是“物以类聚,人以群分”在原始数据集中的运用,其目的是把原始数据聚成几类,从而使得类内相似度高,类间差异性大。

3.关联规则

数据挖掘可以用来发现规则,关联规则属于一种非常重要的规则,即通过数据挖掘方法,发现事务数据背后所隐含的某一种或者多种关联,从而利用这些关联来指导商业决策和行为。

4.奇异值检测

根据一定准则识别或者检测出数据集中的异常值,所谓异常值就是和数据集中的绝大多数据表现不一致。

5.智能推荐

这是数据挖掘一个很活跃的研究和应用领域,在各大电商网站中都会有各种形式推荐,比方说同类用户所购买的产品,与你所购买产品相关联的产品等。

以上就是小编整理的python数据挖掘的常见基本任务,希望对大家有所帮助。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询